Example 1. $\lim _{x \rightarrow 0} \cos x=1$ (Prove!)
Def. $\delta_{0}=\pi / 3$
(t) $f=\varepsilon>0 \quad \exists \delta(\varepsilon)>0$ st. $\delta(\varepsilon) \leq \delta_{0}$ and

$$
\begin{aligned}
& -\delta(\varepsilon)>0 \text { sit. } \delta(\varepsilon) \leqslant \delta_{0} \text { and } \\
& 0<|x-0|<\delta(\varepsilon) \Rightarrow \underbrace{|\cos x-1|<\varepsilon}_{\text {solve for }}
\end{aligned}
$$

solve for $|x|$?
What comes to roue is the del of cor solve for Ci l 2 ?

$0<u<\pi / 3$ length of the green are un s is is burse length $O A$ 1- $-\cos u$ iss purple $\overline{A C}$ $\overrightarrow{B C}$ is range
$\triangle A B C$ is a right triangle: $\overline{A C}$ is its tide $\overline{B C}$ is its hypothemns. $B y$ PT $\overline{A C} \leq \overline{B C}$ Remember! the straight line is the sloortext distance between two points. Therefore

$$
\begin{aligned}
& \text { between two points. Therefore } \\
& \overrightarrow{A C} \leq \overparen{B C} \\
& 1-\cos \mu \leqslant \mu \\
& \text { For negative } x:-\frac{\pi}{3}<x \leq 0 \\
& \text { this kat been deduced } \\
& \text { assuming } 0 \leqslant u<\pi / 3 \\
& \text { we set } n=-x=|x| \text {. Then } \\
& 1-\cos (-x) \leqslant-x=(x) \\
& 1-\cos x \leqslant|x| \\
& \text { for all } x \in(-\pi / \pi, \pi) \\
& \text { (Gl) }
\end{aligned}
$$

By def. of $\cos : 0 \leqslant \cos x \leqslant 1$ fro all

$$
0 \leq \cos x \leq 1 \text { for all }
$$

From (61) and S respects addition:

To use The Sand. Square properly, I need to prove by definition that:

$$
\lim _{x \rightarrow 0} 1=1 \quad\binom{\text { this should }}{\text { be easy }}
$$

When we are dove, we have pripurusey pred:

$$
\lim _{x \rightarrow 0}(\cos x)=1
$$

The next limit

$$
\lim _{x \rightarrow 0} \frac{\sin x}{x}=1
$$

