Exercise 1.4.10(g) in the motes?
It is just algebra with the logarithm function.

$$
\begin{aligned}
\ln & \left(\left(\frac{1}{|x|}\right)^{3 / \ln (x \mid}\right)= \\
& =\ln \left(|x|^{-3 / \ln |x|}\right) \\
& =-\frac{3}{\ln |x|} \ln |x| \\
& =-3 \quad \forall x \in \mathbb{R}\{0\}
\end{aligned}
$$

Therefore

$$
\begin{aligned}
& \left(\frac{1}{|x|}\right)^{3 / 4|x|}=e^{-3} \\
& \forall x \in \mathbb{R} \backslash\{0\} \\
& \lim _{x \rightarrow 0} e^{-3}=?=e^{-3} \\
& \text { Should be cosy to!! }
\end{aligned}
$$

To some extend this is the same problem as:

$$
\lim _{x \rightarrow 0} \frac{|\operatorname{sign}(x)|}{e^{3}}=e^{3}
$$

$x \rightarrow 0$ Prove it?

