Continuity, the fundamental concept in Mathematics May 5,2020

Continuous functions

Definition Let $f: D \rightarrow \mathbb{R}, D \subseteq \mathbb{R}$. Let $a \in D$. A function $f: D \rightarrow \mathbb{R}$ is continuous at a $\& f$

$$
\lim _{x \rightarrow a} f(x)=f(a) \text {. }
$$

f is coutimurus on D if it is continuous at each point $a \in D$.
The above definition hides its content behind the concept of limit. Since the concept of CONTINUITY 2 S fundamental in MATH we should give
a complete dey. of $\operatorname{CDNT} \mid X U T I$, wot hide it \bar{V}
Definition let $f: D_{t} \rightarrow \mathbb{R}, D \subseteq \mathbb{R}$ be a give f Let $a \in D$. f is coutimous at a if the following two conditions are satisfied:
(I) $\square \delta_{0}>0$ sit. $\left(a-\delta_{0}, a+\delta_{0}\right) \subseteq D_{\text {. }}$.
(II) $\forall \varepsilon>0 \quad \exists \delta(\varepsilon)>0$ s.t. $\delta(\varepsilon) \leqslant \delta_{0}$ and

$$
|x-a|<\delta(\varepsilon) \Longrightarrow|f(x)-f(a)|<\varepsilon
$$

$f: D \rightarrow \mathbb{R}$ is continuous on D if it is continues at each point in D.
Let us PROVE that all "famous" functions are continue

Remark: sort: $[0,+\infty) \rightarrow \mathbb{R} \operatorname{sgrt}(x)=\sqrt{x}$ Is sat cod. at o ? We will address this later. This will be studied in more detail in 312,421 and 422 .
Example sgrt: $\mathbb{R}+\rightarrow \mathbb{R}, \mathbb{R}_{+}$denudes all

$$
\operatorname{sgrt}_{0}(x)=\sqrt{x} .
$$

Prove that \sqrt{x} is continuous on \mathbb{R}_{+}^{p}.
Lot $a \in \mathbb{R}_{t}$ be arkitrany.
(I) $a>0 \quad \delta_{0}=a / 2>0$

Clearly $\sqrt{-}$ is
defined on $\left(a-\delta_{0}, a+\delta_{0}\right)=\left(\frac{a}{2}, \frac{3 a}{2}\right)$

From now on we consider only $x \in\left(\frac{a}{2}, \frac{3 a}{2}\right)$, or in other cords only \times st.) $|x-a|<\frac{a}{z}$
(II) Let $\varepsilon>0$ be arbitiany. Now find $\delta(\varepsilon) \nabla$ How do I do that? Solve $|\sqrt{x}-\sqrt{a}|<\varepsilon$ in-gremins \rightarrow 曷
, simplify for $|x-a|$.
So, simplify $=1$

$$
\begin{aligned}
& \left|\begin{array}{ll}
\sqrt{x}-\sqrt{a} \mid \stackrel{y}{x} \\
\mid x>0, \sqrt{a}>0 \\
1
\end{array}\right|(\sqrt{x}-\sqrt{a}) \frac{\sqrt{x}+\sqrt{a}}{\sqrt{x}+\sqrt{a}}\left|=\left|\begin{array}{l}
|x-a|
\end{array}\right|=\left|(x-a) \frac{1}{\sqrt{x}+\sqrt{a}}\right|\right. \\
& \text { mop.of }=\text { l. } \\
& \underset{f l \mid l}{0, \sqrt{a}>0}|x-a| \frac{1}{\sqrt{x}+\sqrt{a}} \leqslant \frac{|x-a|}{\sqrt{a}} \text { Thizar-party } \quad \text { This our }
\end{aligned}
$$

$B \mid N$ is:

$$
|\sqrt{x}-\sqrt{a}| \leqslant \frac{|x-a|}{\sqrt{a}} \quad \text { valid for all }
$$

Now, instead of solving $|\sqrt{x}-\sqrt{a}|<\varepsilon$ for $|x-a|$ I solve munch simpler $\frac{|x-a|}{\sqrt{a}}<\varepsilon$ for $|x-a|$ The solution is $|x-a|<\sqrt{a} \varepsilon$.
Set:

$$
\delta(\varepsilon)=\min _{\mathrm{A}}^{\operatorname{becumf}}\left\{\sqrt{a} \varepsilon, \frac{a}{2}\right\}
$$

Now grove

$$
|x-a|<\min \left\{\sqrt{a} \varepsilon, \frac{a}{2}\right\} \Rightarrow|\sqrt{x}-\sqrt{a}|<\varepsilon
$$

Should not be difficult. Use B/N

