The famous trigonometric functions cosine and sine are uniformly continuous on R

May 8, 2020

The famous trigonometric Examples functions XHOCOOX, XEK, $X \mapsto SinX, X \in \mathbb{R}$ are continuous on P. (In fact they are uniformly continuous.) Prove it proofessor I will first prove the following inequalities: $\forall u, v \in \mathbb{R}$ $|\cos u - \cos v| \leq |u - v|$, $|\sin u - \sin v| \leq |u - v|$

Assuming these red inequalities are green, let us more the misform continuity:

Hae R 42>0] S(E)>0 S.t. YXER |X-a|<62) | |SX-sa|<E Then $S(\xi) = \xi$ for every $\xi > 0$. A the inequalities then $\xi = \xi$ for every $\xi > 0$. Then $\xi = \xi$ for every $\xi > 0$. Then $\xi = \xi$ for every $\xi > 0$. Then $\xi = \xi$ for every $\xi > 0$. A proved based on the inequalities Prove $\forall u, v \in \mathbb{R}$ $|\cos n - \cos v| \leq |n - v|$ $|\cos n - \cos v| \leq |n - v|$ $|\cos n - \cos v| \leq |n - v|$ $|\sin A = (x_1, y_1), B = (x_2, y_2)$ $|\sin A = (x_1, y_1), B = (x_2, y_2)$ $|\cos A = (x_1, y_1), B = (x_2, y_2)$ $|\cos A = (x_1, y_1), B = (x_2, y_2)$ $|\cos A = (x_1, y_1), B = (x_2, y_2)$ Step 2 Assume that the projects A and B are on the mit circle. Then AB & AB
where AB is the length of mit circle arc
where AB is the length of mit circle arc

< AB < AB $A = (\cos u, \sin u)$ $B = (\cos v, tiu v)$ Recall that mand v are the are lengths from (1,0) to A and B resp. AB = | n-v | (G2) 11-v by G1 and G2 u-v ≥ by G1 and G2 But $CA = |\cos u - \cos v|$ $CB = |\sin u - \sin v|$ $|\cos u - \cos v| \leq |u - v|$ | Sin m - din v [<)m - v [

Conclusion: cos and sin ære mispruly continuous on It. Example X+>lux, X∈R.

In is continuous on Rt, but not uniformly continuous.