Sequences

Def. A sequence is a function whose domain is the set of positive integers (and codomain the set of real numbers). $S=\mathbb{N} \rightarrow \mathbb{R}$
Examples $\circledast 1,2,2,3,3,3,4,4,4,4,5, \ldots$ this sequence is given as a list of its values. It is implied the at $r_{1}=1, r_{2}=2, r_{3}=2, r_{4}=3, r_{5}=3, r_{6}=3, r_{7}=4, \ldots$ It is an interesting challenge to find a formula for r_{n}. In fact $r_{n}=\left\lfloor\frac{1}{2}+\sqrt{2 n}\right\rfloor, n \in \mathbb{N}$ 。

* $1,2,4,8,16,32,64,128,256, \ldots$ this sequence is called the powers of $2 . p_{n}=2^{n-1} n \in \mathbb{N}$. In general, for $a \in \mathbb{R} \quad p_{n}=a^{n-1}, n \in \mathbb{N}$ (powers of a).
* Often sequences are given by a recursive formula:
the next member of a sequence is given as a formula involving previous members.
Example This is a recursive formula for powers of $a, a \in \mathbb{R}$.

$$
p_{1}=1, \quad p_{n+1}=a p_{n}, n=1,2,3, \ldots
$$

Example $x_{1}=2, x_{n+1}=\frac{x_{n}}{2}+\frac{1}{x_{n}}, n=1,2,3$.

$$
\begin{aligned}
& x_{1}=2, x_{n+1}=\frac{x_{n}}{2}+\frac{1}{x_{n}}, n \\
& x_{2}=\frac{2}{2}+\frac{1}{2}=\frac{3}{2}, x_{3}=\frac{3 / 2}{2}+\frac{1}{3 / 2}=\frac{3}{4}+\frac{2}{3}=\frac{17}{12}, \cdots \\
& n=1)
\end{aligned}
$$

$x_{4}=1$ (computers love recursive formulas)

$$
\begin{aligned}
& x_{4}=(\text { computers } \\
& x_{1}=2, x_{2}=\frac{3}{2}, x_{3}=\frac{17}{12}, x_{4}=\frac{577}{408}, \cdots \\
& 1.5 \approx 1.41667 \approx .1 .1421
\end{aligned}
$$

An interesting question is: Do the numbers $x_{1}, x_{2}, x_{3}, \ldots$ approach some limit L ? Does the limit $x_{n} \rightarrow L$ exist as $n \rightarrow+\infty$?

As you can guess from the approximate values
$x_{n} \rightarrow \sqrt{2}$ as $n \rightarrow+\infty$.
We will prove this later.
Two famous sequences:

$$
\begin{aligned}
& \left.x_{n}=\left(1+\frac{1}{n}\right)^{n}, n \in \mathbb{N} \text { (sequence given }\right) \\
& t_{1}=2, t_{n+1}=t_{n}+\frac{1}{(n+1)!}, n=1,2,3, \ldots
\end{aligned}
$$

Calculate $=t_{2}=2+\frac{1}{2!}, t_{3}=2+\frac{1}{2!}+\frac{1}{3!}, t_{4}=2+\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}$.

$$
\begin{aligned}
& t_{5}=2+\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+\frac{1}{5!}=\frac{1}{0!!}+\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+\frac{1}{5!} \\
& t_{n}=\frac{1}{0!}+\frac{1}{1!}+\frac{1}{2!}+\cdots+\frac{1}{n!} \text { (the sum of reciprocal } \\
& \text { the factional!) }
\end{aligned}
$$

An amazing fact

$$
\begin{aligned}
& \text { amazing fact } \\
& \left(1+\frac{1}{n}\right)^{n} \rightarrow e \quad(n \rightarrow+\infty) \begin{array}{c}
\substack{\text { Proved } \\
\text { earlier }} \\
\frac{1}{0!}+\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+\cdots+\frac{1}{n!} \rightarrow e(n \rightarrow+\infty)
\end{array}
\end{aligned}
$$

Convergence of a sequence
A sequence $S: \mathbb{N} \rightarrow \mathbb{R}$ converges very simile $f(x)=$ L to $\in \mathbb{R}$ as $n \rightarrow+\infty$ if the following condition is satisfied:

If S converges to L we unite $\lim _{n \rightarrow+\infty} S_{n}=L$
Example (very important) Let $r \in(-1,1)$
Then $\lim _{n \rightarrow+\infty} r^{n}=0$.
Proof. Let $\varepsilon>0$ be arbitrary. Need to find $N(\varepsilon)$ such that $\forall n \in \mathbb{N} \quad n>N(\varepsilon) \Rightarrow\left|r^{n}-0\right|<\varepsilon$.
Simplify: $\left|r^{n}-0\right|=\left|r^{n}\right|=|r|^{n}$.
Solve $|r|^{n}<\varepsilon$. Take ln of both tides.
$n \ln |r|<\ln \varepsilon$ hare $\ln |r|<0$ so $n>\operatorname{sen} \varepsilon / \ln |n|$

In fact, since $\ln |r|<0$ we have the following equivalences

$$
\begin{aligned}
& \text { equivalences } \\
& |r|^{n}<\varepsilon \Leftrightarrow n \ln |r|<\ln \varepsilon \Leftrightarrow n>\frac{\ln \varepsilon}{\ln |r|}
\end{aligned}
$$

Hence, we can set $N(\varepsilon)=\frac{\ln \varepsilon}{\ln |r|}$.

$$
\text { Then } \begin{aligned}
n \in \mathbb{N} \text { and } n>\ln \varepsilon & \Rightarrow n \ln |r|<\ln \varepsilon \\
\ln |r| & \Rightarrow \ln |r|^{n}<\ln \varepsilon \\
& \Rightarrow|r|^{\circ}<\varepsilon \\
& \Rightarrow\left|r^{n}-0\right|<\varepsilon
\end{aligned}
$$

