A detailed proof of the
Monotone Convergence Theorem
My thoughts on writing:
Think through witting.
Learn through writing.
Write, for the audience of one:
Yourself.
May 19,2020

N Learn through writing! Think through writing. Write for yourself! \qquad
The Completeness Axioms of \mathbb{R}^{r} If $A \subseteq \mathbb{R}, B \subseteq \mathbb{R}, A \neq \varnothing, B \neq \varnothing$ and $\forall a \in A \forall b \in B$ we have $a \leq b$, then $\exists c \in \mathbb{R}$ st. $\frac{a \leq c \leq b \forall a \in A \forall b \in B}{A}$

The Monotone Comergence Theorem
If a sequence is monotonic and bounded, then it converges.
Proof. Case 1. A sequence is non-decreasing
Let $S: N \rightarrow \mathbb{R}$ be non and decreasing and baud above.
That is $\forall n \in \mathbb{N} \quad \Delta_{n} \leqslant \Delta_{n+1}\left(s_{1} \leqslant s_{2} \leqslant \cdots \leqslant s_{n} \leq \Delta_{n+1} \leqslant\right.$
and $\exists M \in \mathbb{R}$, such that $\forall n \in \mathbb{N} \quad S_{n} \leq M$ What is RED?

$$
\begin{aligned}
& \text { What is } R E D ? \\
& \exists L \in \mathbb{R} \text { sit. } \forall \varepsilon>0 \exists N(\varepsilon) \in \mathbb{R} \text { st. } \\
&
\end{aligned}
$$

$\forall n \in \mathbb{N}$ we have $n>N(\varepsilon) \Rightarrow\left|\Lambda_{n}-L\right|<\varepsilon$

This smells like CA ∇_{0} (completeness Axivr) So, set

$$
\begin{aligned}
& \text { So, set } \\
& A=\left\{s_{n}: n \in \mathbb{N}\right\} \text { (range of } S: N / N \text {) } \\
& B=\{b \in \mathbb{R}: b \text { is an upper bound for } A\}
\end{aligned}
$$

Clearly $A \neq \varnothing, B \neq \phi$ since $M \in B$ 。 Clearly $\forall a \in A \quad \forall b \in B$ wo have $a \leq b$ $I a \in A$, then $a=s_{n} \leq b \in B$ since \bar{b} is com upper bound for s.

Thus All the hypothesis of © A are dalitid
Therefore $\exists c \in \mathbb{R}$ such that
$\forall n \in \mathbb{N} \forall b \in B \quad s_{n} \leqslant c \leqslant b G 1$
By G1 c is
an upper bound for the segeneces. any uepentrand Thus $c \in B$ (cal weer foments for 1) for $(c$ is cold the least upper bombed for A)
In fact we have hat $c=\min B$ we have minimum o of B)

Redo our mimer line with A and B

Now we are ready \sim_{c} is special it is to address REDT. $\operatorname{Set} L=$ thisinNT an upper bound.

Let $\varepsilon>0$ be arbitrary. Thention. $-\varepsilon<c$ but $c \leqslant b$ for all b upper bounds for $\Lambda_{\text {. }}$ Therefore $c-\varepsilon$ is NO 6 am upper bound for.
$c-\varepsilon$ is $N \theta T$ an upper bound for S.
How do you say this in Mathis lemgunge?
This is trow:
$\exists \mathbb{N}(\varepsilon) \in \mathbb{N}$ suckle that

$$
c-\varepsilon<s_{N(\varepsilon)}
$$

Now if I take $n \geqslant N(\varepsilon)$
since sn in non-decreasing, I have

$$
s_{n} 3 s_{N(\varepsilon)} \leq s_{n} \quad \forall n \geqslant N(\varepsilon)
$$

From G2 \& G3 we conclude that

$$
\forall n \in \mathbb{N} \quad n \geqslant N(\varepsilon) \Rightarrow c-\varepsilon<s_{n} .
$$

That is: $\forall n \in \mathbb{N} \quad n \geqslant N(\varepsilon) \Rightarrow c-\Lambda_{n}<\varepsilon G 4$
But we know from $G 1$ that $\forall n \in \mathbb{N} c \geqslant s_{n}$.
Therefore $\forall n \in \mathbb{N}\left|s_{n}-c\right|=c-s_{n}$.
Thus $G 4$ can be rewritten as

$$
\forall n \in \mathbb{N} \quad n \geqslant N(\varepsilon) \Rightarrow\left|\Lambda_{n}-c\right|<\varepsilon
$$

Since $\varepsilon>0$ was arbitrary, we have proved that
$\forall \varepsilon>0 \exists N(\varepsilon) \in \mathbb{N}$ such that $\forall n \in \mathbb{N} \quad n \geqslant N(\varepsilon) \Rightarrow\left|A_{n}-c\right|<\varepsilon$.
This proves that $L=c$ is the limit of $S: \mathbb{N} \rightarrow \mathbb{R}$. We proved

$$
\lim _{n \rightarrow+\infty} \Lambda_{n}=c
$$

