Infinite Series in particular Geometric Series
May 22,2020

I posted interesting stuff at the website yesterday!

$$
\lim _{n \rightarrow+\infty}\left(1+\frac{1}{n}\right)^{n}=\lim _{n \rightarrow+\infty} \sum_{k=0}^{n} \frac{1}{k!}
$$

exists! existencernoved inclass
Infinite Series
Given a sequence $a=\mathbb{X} \rightarrow \mathbb{R}$ with terms $a_{1}, a_{2}, a_{3}, \ldots, a_{n} n_{0}$

A sequence $S_{1}=a_{1}, S_{n+1}=S_{n}+a_{n+1}$
is called the tegnence of partial swiss of $\sum_{k=1}^{\infty} a_{k}$
We say that $\sum_{k=1}^{\infty} a_{k}$ converges is the sequence of its partial sums $\left\{S_{n}\right\}$ Converges. Otherwise, we say $\sum_{k=1}^{\infty} a_{k}$ diverges.
Examples $a_{n}=\frac{1}{2^{n}}, n \in \mathbb{N}$
The associated infinite series is ∞

$$
\begin{aligned}
& \text { added iuppicite fences } 15 \infty \\
& \frac{1}{2}+\frac{1}{4}+\cdots+\frac{1}{2^{n}}+\cdots=\sum_{k=1} \frac{1}{2^{k}}
\end{aligned}
$$

We proved yesterday that the partial sums of this infinite series CAN BE CALCULATED

$$
\begin{aligned}
& S_{n}=1+2+\cdots+n=\frac{1}{2} n(n+1)>\frac{1}{2} n^{2} \\
& n+(n-1)+\cdots+n \\
& \frac{t}{(n+1)(n+1)}+(n+1) \\
& \text { The tegnence } S_{1}, S_{2,}, \cdots, S_{n}, \ldots \text { is not bad } \\
& \text { so it does not converge. }
\end{aligned}
$$

Example Yesterday we PROVED that the infinite series $\sum_{k=0}^{\infty} \frac{1}{k!} \operatorname{CONVERC} E S_{0}$ Next we study the geometric iufiulte senses (general)

Def. An infinite series $\sum_{k=0}^{\infty} a_{k}$ is called a geometric series if $\exists r \in \mathbb{R}\left\{\right.$ sst. thu ratio $\left\{\begin{array}{l}k=0 \\ a_{n}\end{array}\right.$

$$
\frac{a_{n}}{a_{n-1}}=r \quad \forall n \in \mathbb{N}
$$

$a_{0} \in \mathbb{R} \backslash\{0\}, \frac{a_{1}}{a_{0}}=r, a_{1}=a_{0} r, \ldots, a_{n}=a_{0} r^{n}$
usually $a_{0}=a \quad a+a r+a r^{2}+\cdots+a r^{u}+\cdots$
Here $a \in \mathbb{R}$ l佝 $r \in \mathbb{R} \backslash\{0,1\}$
Now study convergence of a geometric series:
$n \in \mathbb{N}_{0} \quad S_{n}=a \sum_{\substack{n=0}}^{r^{k}} \frac{\text { look }}{\frac{\text { lox }}{\text { watt }}} a \frac{1-\Gamma^{n+1}}{1-r}$ fol the grexinitication

Let us understand this SUM (finite).
The-magic is that we cam find a $\underbrace{\text { closed for }}_{\text {which depends explyon rand } n} \sum_{k=1}^{n} r^{k}$

$$
1+r+\cdots+r^{n}=\text { id }=\text { malignly both }
$$

Next cones a brilliant idea ${ }^{\circ}=$ sides lay r

$$
\begin{aligned}
& -1+\underbrace{1+r+r^{2}+\cdots+r^{n}+r^{n+1}=r X}_{n+r^{n+1}} \text { share is } X \text { helineng } \\
& X-1+r^{n+1}=r X \text { wide } \\
& (1-r) X=1-r^{n+1} \text { DONE } X=\frac{1-r^{n+1}}{1-r}
\end{aligned}
$$

Now study the sequence of partial sums of $\begin{aligned} & \text { a geometivic series: } a+a r+\cdots+a r^{n}+\cdots \\ & 1-r+1 \text { with } a \neq 0 \text { and }\end{aligned}$
 A geometric series converges se
iq $r \in(-1,1)$ diverges if $r \notin(-1,1)$

