Applications of Geometric Series Decimal Expansions May 26,2020

- Geometric Series
 In imine $\sum^{\infty} a_{n}$ (them study the associated eqenacice

$$
\longrightarrow I f \quad \begin{aligned}
& \frac{a_{n}}{a_{n-1}}=r \in \mathbb{R} \backslash\{0,1\} \\
& \text { for all } n \in \mathbb{N}
\end{aligned}
$$

then the series $\sum_{n=0}^{\infty} a_{n}$ is called
a GEOMETRIC SERIES

If $\forall n \in \mathbb{N} \quad \frac{a_{n}}{a_{n-1}}=r$, then $n=1 \quad \frac{a_{1}}{a_{0}}=r, \quad \begin{aligned} & a_{1}=a_{0} r, \text { we unite } a_{0}=a \text {. } \\ & a_{1}=a r\end{aligned}$ $n=2 \quad \frac{a_{2}}{a_{1}}=r, \quad a_{2}=a r^{2}$

$$
\begin{array}{lll}
n=2 & \frac{a_{2}}{a_{1}}=r, & a_{2}=a r^{2} \\
n=3 & \frac{a_{2}}{a_{2}}=r, & a_{3}=a r^{3}, \ldots, \\
a_{n}=a r^{n} \\
\end{array}
$$

So GScean be writer as

$$
\left.\sum_{n=0}^{+\infty} \operatorname{ar}^{n}, \quad r \in \mathbb{R} \backslash\{0,1\}\right\}
$$

The magic of $G S$ is that we know
the closed form expressing for the

$$
\begin{aligned}
& \text { partial sous: } \\
& S_{n}=\sum_{k=0}^{n} a r^{k}=a \frac{1-r^{n+1}}{1-r} a l_{n \in N_{0}} \\
& \text { If }|r|<1 \text {, thu GS converges } \& \lim _{n \rightarrow+\infty} r^{n}=0 \text { if }
\end{aligned}
$$

$$
\begin{aligned}
& \text { IS } \sum_{n=1}^{\infty} \frac{2^{2 n-1}}{\pi^{n}} \text { geometric? } \\
& a_{n+1}=\frac{2^{2(n+n-1}}{2^{n n-1}} \\
& a_{n}=\frac{2^{2 n-1}}{\pi^{n}}
\end{aligned}
$$

$$
\frac{a_{n+1}}{a_{n}}=\frac{\frac{2^{2 n} \cdot 2^{2} \cdot 1 / 2}{\pi^{n+1}}}{\frac{2^{2 n \cdot} \cdot \pi^{2 / 2}}{\pi^{n}}}=\frac{4}{\stackrel{p}{p}} \text { do arithmetic }
$$

Given GS diverges.
Since Middle Scliool you deal with decinuial expansions. Let us talk just about real unkers in $[0,1]$. So, the decircal sobers $x=0 . d_{1} d_{2} d_{3} d_{4} \cdots d_{n} \cdots$ where Here we have a sequence of digits $d_{n} \in\left\{0,1, \ldots, \frac{\mathbb{D}}{7}\right.$ $d: \mathbb{N} \rightarrow \mathbb{D}$

What is of $0 \cdot d_{1} d_{2} d_{3} \ldots d_{n} \ldots$
What is a rigorses mathematical interpretation of this range box?
Amaringly, this is an infinite series
You have been dealing with infinite
series since middle school.

Study the portal
suns of $\sum_{n=1}^{\infty} \frac{d_{n}}{10^{n}} \cdot{ }^{\text {A }}$ Greenify TH/S
For $\sum_{n=1} \frac{d_{n}}{n}$
$n \in \mathbb{N} S_{n}=\sum_{k=1}^{n} \frac{d_{k}}{10^{k}}$.
$S_{1}, S_{2}, \ldots, S_{n} \ldots$ is a
sequence, for which
Our only tool is MCT We need monotonicity
Q badness. $\left.\quad S_{n}-S_{n-1}=\frac{d_{n}}{10^{n}} \geqslant 0 \quad \forall_{n \in N \mid} \right\rvert\,$
Thus $\left\{S_{n}\right\}$ is $\left.N O N \cdot D E C R E S I N G\right\}$
That is $S_{1} \leqslant S_{2} \leqslant S_{3} \leqslant S_{n} \leqslant \cdots \leqslant S_{n} \leqslant \cdots \cdot$
Now bold above:
$d_{k} \leqslant 9$
$n \in \mathbb{N}$ are. $S_{n}=\sum_{k=1}^{n} \frac{d k}{10^{k}} \leqslant \sum_{k=1}^{n} \frac{9}{10^{k}}$

$$
\begin{aligned}
& =:\left(\frac{9}{9}\right)+\frac{9}{10^{2}}+\cdots+\frac{9}{10^{n}}= \\
& \underset{c=1 / 1010}{=\left(\frac{9}{10}\right.} \frac{1-\frac{1}{100}}{1-\frac{1}{10}} \leqslant \frac{9}{10} \frac{1}{\frac{9}{10}}=1
\end{aligned}
$$

Proved: $S_{n} \leqslant 1 \nabla^{10} n \in \not \subset$
We just proved what you have buoun from Middle School $\forall d: \mathbb{X} \rightarrow \mathbb{D}\binom{$ age ged }{ gait } the SERIES $\sum_{n=1}^{\infty} \frac{d n}{0^{n}}$ CONVERGES.

If $d: \mathbb{N} \rightarrow \mathbb{D}$ (a sequence of digits) is periodic $\left(\exists p \in \mathbb{N}\right.$ st. $\left.d_{n+p}=d_{n} \forall n \in \mathbb{N}\right)$ then $\sum_{n=1}^{\infty} \frac{d_{n}}{10^{n}}$ is a rational unber。
What is: $0.123123123 \ldots=0 . \overline{123}=$?

$$
\frac{\text { Assign. } 3}{0 \cdot B C B C B C B C B C}=\frac{123}{999}=\frac{41}{333}
$$

$$
\begin{aligned}
& \text { geownic tens } \\
& a=\frac{123}{1000}, r=\frac{1}{1000}
\end{aligned}
$$

$0 \cdot B C B C B C B C B C \ldots=0 \cdot \overline{B C}=$?

$$
D_{H}=\left\{0,1,2, \ldots, 9, A, B, C_{12}, D, E, F\right\}
$$

These are hexadecimal digits.
My initials BC is an integer in the lexaderinan number system. The logic is the same as in the decimal numbers is similar ($O . B C)_{h i x}$ is $\frac{11}{16}+\frac{12}{16^{2}}=\frac{188}{256} \frac{47}{64}$ 47 is ($2 F$) lex,, 64 is (40) hex so $\left(\frac{2 F}{40}\right)_{\text {hex }}$ Hexadecimal integers are really used incr Coding colors is programing, like litre.

In RGB coloring schave the muser
\#FFOOOD represents red $\# 00$ FFFF is cyan
\# 00 FFOO represents green \# FFOOFF is magenta
\# 0000 FF represents blue \# FFFFOO is yellow
For each color we use an integer between 00 and (FF) 255 Interesting colors are using lalf-way values bed weer $008 F$ that is $(80)_{\text {hex }}$: Teal is \#008080 (dark cyan)
Olive is \#808000 (dark yellow)
Purple is \#800080 (dark magenta)
Maroon is \#800000 (dark red)
Nary is \#000080 (dark blue)
Orange is \#FF8000 (half-way between
More about colors you can find by googling curgus corr cube

