

- Geometric Series Given a seguence a: No + R, say a, a, a, az, --, a, -1, a, --; Infinite $\sum_{n=0}^{\infty}$ on then study the associated segnance forming $\sum_{n=0}^{\infty}$ of patial sums $S_n = \sum_{k=0}^{\infty} a_k$, nexts $Tf \frac{a_n}{a_{n-1}} = r \in \mathbb{R} \setminus \{0, 1\}$ Huen the sines \$2 an is called a GEOMETRIC SERIES

If $f n \in N$ $\frac{a_n}{a_{n-1}} = r$, then n=1 $\frac{a_1}{a_0}=r$, $a_1=a_0r$, we notife $a_0=a$. $n=2 \quad \frac{a_2}{a_1}=r \quad , \quad a_2=ar^2$ $N=3 \quad \frac{a_3}{a_2}=\sqrt{1} \quad a_3=ar^3, \ldots, \quad a_n=ar^n$ So GS can be writter as $7 \text{ ar}, r \in \mathbb{R} \setminus 20, 19$ n=0 The magic of GS is that we know

 $1 - \Gamma^{n+1}$ all nepp $S_n = \sum_{k=0}^{n} ar^k =$ 1-0 If IrI<1, HuGSconverges $\lim_{n \to +\infty} r^n = 0$ an $\sum_{n=0}^{\infty} ar^n = a \frac{1}{1-r}$ (rizh) GS divergen lim r DNE N>+00 IrI>1 22011) 2²ⁿ⁻¹ a geometric? Il n Series o a_{n+1} = IS Sh=1 $\frac{2^{2n}}{-n}$

221. 22. 12- $= r > \Lambda$ 77 15# 1 ant1 an 22n . 1/2 In N/2 pointhuetic Given GS diverges. Since Middle School you deal with decirinal expansions. Let us talk just about real numbers in [0,1]. So, the decirinal realows $X = 0.d_1d_2d_3d_4 \cdots d_n \cdots$ where $d_n \in \{0, 1, \dots, 9\} = D$ Here we have a seguence of digits the set of d: IN > D

What is Dod dz dz ... d'n. What is a rigorous mathematical interpretation of this orange DOX? Amazingly, fluis is au infinite sories You have been dealing with infinite series fince middle school. $X = \sum_{n=1}^{\infty} \frac{d_n}{10^n}$ this writing suggests $\frac{d_n}{10^n}$ that we claim that $\sum_{n=1}^{\infty} \frac{d_n}{10^n} CONVERGES$

Study the portial sums of $\frac{dn}{\sum_{n=1}^{\infty} \frac{dn}{10^n}}$. Greenify TH/SV For $n \in \mathbb{N}$ $S_n = \sum_{k=1}^n \frac{d_k}{10^k}$ S₁, S₂, ..., S_n, ... is a seguence, for which I want to prove fleat it Our only tool is MCT CONVERGES. We need monotonicity Thank you Daniel! $S_n - S_{n-2} = \frac{d_n}{10^n} \ge 0$ $\forall n \in \mathbb{N} \mid d_1$ Thus $\{S_n\}$ is NON-DECRESING \mathbb{R} That is $S_1 \leq S_2 \leq S_3 \leq S_4 \leq \cdots \leq S_n \leq$ Now Edd above: $d_{k} \leq 9$

 $S_n = \sum_{k=1}^{n} \frac{d_k}{10^k} \leq \sum_{k=1}^{n} \frac{g}{10^k}$ ne Marb. $= \frac{(\frac{9}{10}) + \frac{9}{10^2} + \dots + \frac{9}{10^n}}{(\frac{1}{10})^2 + \dots + \frac{9}{10^n}} = \frac{1}{\frac{1}{10}} = \frac{1}{\frac{9}{10}} = \frac{1}{\frac{9}{10}} = \frac{1}{\frac{9}{10}} = 1$ Proved: $S_n \leq 1 \forall n \in X$ We just proved what you have known from Middle School V d: IN-> D (of digity flue SERIES 2 dn CONVERGES,

If d: M>D(a sequence of digits) is periodic (3 period. dorp = dn then) then $\sum_{n=1}^{\infty} \frac{d_n}{10^n}$ is a rational number. What is: 0.123123123.... = 0.123 = 0 $= \sum_{n=1}^{123} \frac{123}{10^{3n}} - \frac{1000}{1 - \frac{1}{1000}}$ $\frac{1}{10} + \frac{2}{10^2} + \frac{3}{10^3} + \frac{1}{10^4} + \frac{2}{10^5} + \frac{3}{10^6} + \cdots$ $\frac{123}{103} + \frac{123}{125}$ geornahic fenis $\alpha = \frac{725}{1000}, r = \frac{1}{1000}$ $\frac{123}{999} = \frac{41}{322}$ Assign. 3 BCBCBCBC-=0.BC = 2

 $D_{H} = \{0, 1, 2, ..., 9, A, B, C, D, E, F\}$ $I_{0 \ 11 \ 12 \ 13 \ 14 \ 15}$ These are hexadecimal digits. $I_{0 \ 11 \ 12 \ 13 \ 14 \ 15}$ My impials BC is an integer in the liexadecimat under system. The logic is the same as in the decimal system: (10/mx ris 1×16, (1F), ris 1.16+15 is 31 (20/mx ris 2×16=32. So (BO); 11×16 (20/mx ris 2×16=32. So (BO); = 176 So $(BC)_{hix}$ is 11*16+12=176+12=188. The logic with 10 188 47 = 1000 Jux = 10Hexadecimal integers are really used in coding colors in programing, like litme.

In RGB coloring schance the number #FF0000 represents red #00FFFF is cyan #00FF00 represents green #FF00FF is magenta #0000FF represents blue #FFFF00 is yellow For each color we use an integer between 00 and (FF), 255 Interesting colors are arring half way values between 002 FF that is (80) hex: Teal is # 008080 (dark cyan) Olive is # 808000 (dark yellow) Purple is # 800080 (dark magenta) Maroon is #800000 (dark red) Navy is #000080 (dark blue). Orange is #FF8000 (half-way between red and yellow) More about colors you can find by googleing curgus coror cube