Harmonic Series $\sum_{n=1}^{+\infty} \frac{1}{n}$ Study of the Harmonic Numbers

$$
H_{n}=\sum_{k=1}^{n} \frac{1}{k}, n \in \mathbb{N}
$$

* increasing
* not bid above

$$
\begin{array}{r}
\Delta: \mathbb{N} \rightarrow \mathbb{R} \lim _{n \rightarrow \infty} A_{n}=L \\
\text { then } \lim _{n \rightarrow \infty} s_{n+p}=L .
\end{array}
$$

Formally $\Lambda_{n+p}, n \in N$ is "anothor tequence call it $b: N \rightarrow \mathbb{R}, b_{n}=s_{n+p} \forall n \in \mathbb{N}$ 。 $\forall \varepsilon>0 \quad \exists{ }^{*} N(\varepsilon) \in \mathbb{R}$ s.t. $\forall n \in \mathbb{N} \quad n>N(\varepsilon) \rightarrow P \mid d_{n}-L k \varepsilon$

$$
\forall \varepsilon>0 \quad \exists M^{\nabla}(\varepsilon) \in \mathbb{R} \text { s.t. } \forall n \in \mathbb{N} / n>M(\varepsilon) \neq \mid \rho_{n+p}-L /<\varepsilon
$$

Now prove
Let $n \in N$ be sud that $n>M(\varepsilon)=N(\varepsilon)-p$.
then $n+p>N(\varepsilon)$. By GI. Tate
I deduce $\left|\left|A_{n+p}-L\right|<\varepsilon\right.$
Thu big red box has completely been greemitiof

Let us go back to Infinite series Another Specific famous Infinite Series is the Harmonic Series:

$$
\sum_{n=1}^{\infty} \frac{1}{n}
$$

Its partial Sums are called
Harmonic Numbers
$n \in \mathbb{X}, \frac{H_{n}=\sum_{k=1}^{n} \frac{1}{k} .}{}$

$$
\begin{aligned}
& H_{1}=1 \\
& H_{2}=1+\frac{1}{2}=\frac{3}{2} \\
& H_{3}=1+\frac{1}{2}+\frac{1}{3}=\frac{3}{2}+\frac{1}{3}=\frac{9+2}{6}=\frac{11}{6} \\
& \vdots \\
& \forall n \in \mathbb{N} H_{n+1}-H_{n}=\frac{1}{n+1}>0
\end{aligned}
$$

Hence $\forall n \in \mathbb{X} \quad H_{n}<H_{n+1}$.
Thus, the sequence of harmonic numbers is INCREASING。

By the MCT, the sequence of harmonic numbers converges if and only if it is bod above.
The sequence of Harmonic numbers is NOT bad above.
I will greenify this statement sext.
This gremification is a beautiful reasoning.
We consider the Harmonic numbers with indexes that are the powers of $2: 1,2,4,8,16,32$

$$
\begin{aligned}
& H_{2}=H_{1}=1 \\
& H_{2_{1}}=H_{2}=1+\frac{1}{2} \\
& \text { this is reasowing. } \\
& \text { Pizza-Party } \\
& \text { 6 We wait less pizaz ounteris } \\
& H_{2^{2}}=H_{4}=H_{2}+\frac{1}{3}+\frac{1}{4} \geqslant H_{2}+\frac{1}{4}+\frac{1}{4}=1+\frac{1}{2}+\frac{1}{2}=1+2 \cdot \frac{1}{2} \\
& H_{2^{3}}=H_{B}=H_{4}+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8} \geqslant H_{4}+4 \cdot \frac{1}{8} \geqslant 1+2 \cdot \frac{1}{2}+\frac{1}{2}=1+3 \frac{1}{2} \\
& H_{3}=H_{16}=H_{8}+\frac{1}{9}+\cdots+\frac{1}{16} \geqslant H_{8}+8 \cdot \frac{1}{16} \geqslant 1+3 \frac{1}{2}+\frac{1}{2}=1-1489 \frac{1}{3^{2}}
\end{aligned}
$$

this is a recursive proof of Piras-Pary peconssion

$$
H_{2^{m}}=H_{2^{n-1}}+\underbrace{\frac{1}{2^{n-1}+1}+\cdots+\frac{1}{2^{n}} \geqslant H_{2^{m-1}}+\frac{1}{2} \geqslant 1+(m-1) \frac{1}{2}+\frac{1}{2}=-m_{m} \frac{1}{2}}_{2^{m-1}}
$$

Thus we recursively proved (Mathematical) Inductray
$\forall m \in \mathbb{N}_{0}$

$$
\begin{aligned}
& H_{2 m} \geqslant 1+\frac{m}{2} \begin{array}{c}
\text { not id } \\
\\
\hline
\end{array} \\
& \text { I want to prove that } \begin{array}{l}
\exists M \in \mathbb{R} \text { si. } \\
\forall n \in \mathbb{N} a_{n} \leq M
\end{array}
\end{aligned}
$$ $\forall M \in \mathbb{R} \quad \exists n_{M} \in \mathbb{N} . H \cdot H_{n_{M}}=\sum_{\text {hond }}$ Greenify this) RED BOX $\$$

Let $M \in \mathbb{R}$ be arbitiany.

Solve it: $\quad \frac{m}{2}>M-1 \Leftrightarrow m>2 M-2$
One solution is $m=\lfloor 2 M-1\rfloor$
Since we need $m \in \mathbb{N}_{0}$, we must have $2 M-1 \geqslant 0$, then is $M \geqslant 1 / 2$.
But, for $M<1 / 2$ we cam take $m=0$. Thus
$\forall M \in \mathbb{R}$ setting $n_{M}=2^{\left.\left.\max \{2 M-1\}_{0}\right\}\right\}}$
will lead to $H_{n_{M}}>M$ needs to breenified
Set $m_{M}=\max \{\lfloor 2 M-1\rfloor, 0\}$. Them

