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Now prove

Let he IN ke sad that n> Mke)-Nce) -p .
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The big red box has completely been greening



Let us go back to Jnfiuieferies
Another Specific famous Infinite Series is
the Harmonie Series :
a-
-2 In .

n = 1

Its partial sums are
called

Harmonic NumbersI
nEIN H
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Hz = It
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Hn IN Hn* - Hn
= NIT > 0

Hence An c- IN Hn < Hate .

Thus , the sequence of harmonic numbers
is INCREASING .



By the MCT , the sequence of
harmonic numbers converges if andonlyif
it is bold above .
-Thesequence of Harmonic numbers is
NOT bald above .
I will greenidge this statement

next
.

This greenification is a
beautiful reasoning .

We consider the Harmonic numbers
with

indexes that are the powers of 2 : 1,2,418, 16,3?



Hao -Hs = 1 this is reasoning .

I pizza-PartyH
,
= Hz = It -2 ofwewautbsspizzaouwethff

He -- Hy = Hat 13+43 Hat Etf
-
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Ha --
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,
+ It'sTITI > that > Hittites's
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this is a recursive proof ofpizza -Party,recnrsion
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Thus we recursively proved(Mathematical\ Induction)
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Let ME R be arbitrary .
Hmm 3- 'Ifand#Feiffer n.
Hamm > Mttzmmto solve

for

① easy
m



Solve it ; my > M- I ⇒ m > 2.M- 2

one solution is m==L22MM-- E)
Since we need ME No

,
we must have 2M- 130, thatis µMi>Ha

.

But , for Me 1h we
can take m - o. Thus

f MEIR setting nqµ= zmaxtikM¥103needs to be
will lead to Him. >M.kgreenified.SI
mµ=

max { UM-I , 03 . Then

Hzm. 7 It mmz > It ""z > It 2MzI=pg
definition property 9

proved of the algebra
above floor function


