Alternating Series
Alternating Series Test
(Igive a compote proof of this
Theorem) June 4,2020
$\frac{\text { Infinite series }}{\text { chin series mite }} \sum_{n=1}^{\infty} a_{n} \quad a_{n}>0$
We Studied series with $\sum_{n=1} a_{n}$ series with positive then positive partial sunnis

$$
S_{1}=a_{1}<S_{2}=a_{1}+a_{2}<S_{3}=a_{1}+a_{2}+a_{3}<S_{4} \text {. . }
$$

form an increasing sequence, MCT, tells if id then converges,..
When the terms of the series change riga the situation is "inatersting". The most faure example is the mire alta ding harmonic series $+\infty$

$$
1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+\frac{1}{7}-\frac{1}{8}+\cdots=\sum_{n=1}^{+(-1)^{n+1}} \frac{1}{n}
$$

$\sum_{n=1}^{\infty} \frac{1}{n}$ Harmonic Series (Diverges)
In general, we can consider an Infinite series of the form:

$$
\text { cries of the form: } a_{1}-a_{2}+a_{3}-a_{4}+a_{5}-a_{6}+\cdots=\sum_{n=1}^{\infty}(-1)^{n+1} a_{n}
$$

(1) Assume $a_{n}>0 \quad \forall n \in \mathbb{N}$.
(2) Assume $a_{n} \geq a_{n+1} \forall n \in \mathbb{N} \lim _{n \rightarrow \infty} a_{n}=0$

$$
\text { Then } \sum_{n=1}^{\infty}(-1)^{n+1} a_{n}
$$

CoNVERGES

Proof The first step is to list the
GREEN Stat. θ - GREEN stuff.
(91) $\forall n \in \mathbb{N} a_{n}>0$
(G2) $\forall n \in \mathbb{N} \quad a_{n} \geqslant a_{n+1}$
(23) $\lim _{n \rightarrow \infty} a_{n}=0$

Translate to Mathis Cengnage
$\nabla \forall \varepsilon>0 \exists N_{a}(\varepsilon) \in \mathbb{R}$ St.
$\forall_{n} \in$ N $n>N_{n}(\varepsilon) \nRightarrow\left|a_{n}-0\right|<\varepsilon$
What is the core of RED?
I must prove that the SEQUENCE of Partial sums CONVERGES. $S_{n}=\sum_{k=1}^{n}(-1)^{k+1} a_{k} \forall n \in N$

$$
\begin{aligned}
& \quad\left\{S _ { n } S _ { n = 1 } ^ { \infty } \text { converges } \left\{\begin{array}{l}
\text { What does this } \\
\text { really mean? }
\end{array}\right.\right. \\
& =L \in \mathbb{R} \text { st. } \forall \varepsilon>0 \exists \mathbb{N}_{s}(\varepsilon) \in \mathbb{R} \text { st. } \\
& \forall n \in \mathbb{N} \quad n>N_{s}(\varepsilon) \Rightarrow\left|S_{n}-L\right|<\varepsilon
\end{aligned}
$$

the Technical Part here is tell me what is L tell me what is $N_{S}(\varepsilon)=\cdots$
then do the proof $n>N_{s}(\varepsilon) \Rightarrow\left|S_{n}-L\right|<\varepsilon$ Let us understand the partial sues

The Conjecture is: $S_{2 j}<S_{2 k-1}$

Say we proved it, we greenified it

$$
\forall j \in \mathbb{N},+\forall k \in \mathbb{N} \quad S_{2 j}<S_{2 k-1}
$$

Why, tow? this green box?
Now The Conuplatness Axiom

$$
\begin{aligned}
& C A, A, B \subseteq R, A, B \neq \varnothing \\
& \forall a \in A \forall b \in B a \leq b \Rightarrow \exists c \in \mathbb{R} s+t_{t \in A} a \leq \in b b
\end{aligned}
$$

$$
\begin{aligned}
& A=\left\{S_{2 j}: j \in \mathbb{N}\right\} \\
& B=\left\{S_{2 k-1}: k \in N\right\} \\
& \forall a \in A \forall b \in B \quad a<b \\
& C A=\Rightarrow \exists c \in \mathbb{R} s t . \\
& \forall a \in A \quad \forall b \in B \quad a \leq c \leq b
\end{aligned}
$$

Set $L=c$

