Alternating Series Conditional Convergence
June 5,2020

Alternating Series
The nowt mominent example is $\sum_{n=1}^{+\infty}(-1)^{n+1} \frac{1}{n}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\cdots$
The Alternating Harmonic Series.
In general: $\forall n \in \mathbb{N} a_{n} \geq 0$ OI \gg Cenis $\sum_{n=1}^{\infty}(-1)^{n+1} a_{n}$ an Alternating Series
(G2) $\forall n \in \mathbb{N} \quad a_{n} \geqslant a_{n+1}$
(G3) $\lim _{n \rightarrow+\infty} a_{n}=0$
used foetor $S_{2 j} \leqslant S_{2 k-1}$

If $G 1, G 2$ and $G 3$ are satisfied, then the Alternating Series couvergos.
Proof. Study the portil sums:

A conjecture from the above picture is

$$
\begin{aligned}
& \forall j \in \mathbb{N} \forall k \in \mathbb{N} \\
& S_{2 j}<S_{2 k-1}^{\begin{array}{l}
\text { Provdiu the notes } \\
a_{n} \geqslant a_{n+1} \\
S_{2 j}-S_{2 k-1}+k_{k}<0
\end{array}}
\end{aligned}
$$

This gives us a tool to create the limit of the sequence $\left\{S_{n} S_{n=1}^{\infty}\right.$ using the Completeness Ax iou

$$
\begin{aligned}
& \text { If } A, B \subseteq \mathbb{R}, A, B \neq \varnothing \text {, } \\
& \forall a \in A \quad \forall b \in B \quad a \leq b \Rightarrow \exists c \in \mathbb{R} \text { set } a \leq c \leq b \\
& \forall a \in A \forall b \in B \\
& \text { Completanens Axiom ho leaks B real numerbers } \\
& \text { By CA, setting } A=\left\{S_{2 j} ; j \in \mathbb{N}\right\} \\
& B=\left\{S_{2 k-1}: k \in \mathbb{N}\right\} \text {, } \\
& \exists c \in \mathbb{R} \text { set. } \forall j \in \mathbb{N} \forall \forall k \in \mathbb{N} \quad S_{2 j} \leq c \leq S_{2 k-1}
\end{aligned}
$$

Next thing to prove is

$$
\lim _{n \rightarrow+\infty} S_{n}=c
$$

$$
\begin{aligned}
& \forall \varepsilon>0 \quad \exists N_{S}(\varepsilon) \in \mathbb{R} s . t . \\
& \forall n \in \mathbb{N} \quad n>N_{S}(\varepsilon) \not S_{n}-c \mid<\varepsilon
\end{aligned}
$$

How do I find $N_{s}(\varepsilon)$? How do I prover th
Recall that $\lim _{n \rightarrow+\infty} a_{n}=0$ and what this menus is:

$$
\forall \varepsilon>0 \quad \exists N_{a}(\varepsilon) \in \mathbb{R} \text { s. } t
$$

$$
\begin{aligned}
& \varepsilon) \in \mathbb{K} S \cdot T \\
& \forall n \in\left|\mathbb{X} \quad n>N_{a}(\varepsilon) \neq\left|a_{n}-0\right|<\varepsilon\right.
\end{aligned}
$$

There must be a correction between प aud The connection is

$$
\left|S_{n+1}-S_{n}\right|=\left|(-1)^{n+2} a_{n+1}\right| \stackrel{\text { since ce } a_{n+1}>0}{\Rightarrow} a_{n+1}
$$

We know that c is between S_{n} and S_{n+1} Therefore $\forall n \in \mathbb{N}$

$$
S_{n}-c\left|\leqslant\left|S_{n}-S_{n+1}\right|=a_{n+1}\right.
$$

Let $\varepsilon>0$ be arpintary.

Set $N_{S}(\varepsilon)=N_{a}(\varepsilon)$
then $n \in \mathbb{N} n>N_{s}(\varepsilon) \Rightarrow a_{n}<\varepsilon$ but $a_{n+1} \leq a_{n}<\varepsilon$
and $\left|S_{n}-c\right| \leqslant a_{n+1}$ implies $\left|S_{n+1} \leq-c\right|<\varepsilon$
So, I green feed (which was red above)
$\forall n \in \mathcal{N} n>N_{s}(\varepsilon) \otimes\left|S_{n}-c\right|<\varepsilon$.
Thank You Carter.!!

This theorem is Called Alternating Peris It follows from this Theorem that the Alternating Harmonic Series Converges In the notes I prove that.

$$
\begin{aligned}
& \sum_{n=1}^{\infty}(-1)^{n+1} \frac{1}{n}=\ln 2 \\
& \text { In fact } \forall_{p}>0 \sum_{n=1}^{+\infty}(-1)^{n+1} \frac{1}{n^{p}} \text { composes }
\end{aligned}
$$

There is something amazing about the Alt. Harm. Series.

$$
\left.\begin{array}{l}
\left.\sum_{n=1}^{\infty}(-1)^{n+1} \frac{1}{n} \quad \begin{array}{c}
\text { Think of this is } \\
\text { balancing a check hook }
\end{array}\right) \\
\frac{1}{4}-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+\cdots=\ln 2
\end{array}\right]=\left\{\begin{array}{l}
\text { deposits } \\
\text { series dinieges }+\infty
\end{array}\right\}
$$

$$
\begin{aligned}
& 1-\frac{1}{2}-\frac{1}{4}+\frac{1}{3}-\frac{1}{6}-\frac{1}{8}+\frac{1}{5}-\frac{1}{10}-\frac{1}{12}+\frac{1}{7}-\frac{1}{11}-\frac{1}{16}+\cdots \\
& \text { inc thentes }=\frac{1}{2} \ln 2 \\
& \text { I show }
\end{aligned}
$$

Conditional Comvergence $\sum_{n=1}^{\infty} b_{n}$ converges, but $\sum_{n=1}^{\infty}\left|b_{n}\right|$ diverges
we call $\sum b_{u}$ conditionally cowvergeat If hoth $\sum_{n=1}^{\infty} b_{n}$ connverges and $\sum \mid b_{n}$ (coms, Absolute cowirgence $\sum(-1)^{n+1} \frac{1}{a^{2}}$ cowvergecabsolutely (unconditinaly).

