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CHAPTER 1

Limits

1. Numbers

All numbers in these notes are real numbers. The set of all real numbers is denoted by
R.

In this course we will use the standard set notation. We will be dealing with sets that
consist of real numbers. A set can be described by a clear statement such as “Let A be the
set of real solutions of the equation x2 − x = 0.” A set can also be described by a listing
of all its elements; for example A = {0, 1}. To describe sets we often use the set builder
notation:

A =
{

x ∈ R : x2 = x
}

.

The above expression is read as: “The set A is the set of all real numbers x such that
x2 = x.” Here the colon “:” is used as an abbreviation for the phrase “such that”. Instead
of colon many books use the vertical bar symbol | .

Pay attention to the usage of the braces (or curly brackets) { and } in the set notation.
The braces are used to delimit sets. Notice the difference between the symbols 0 and {0}.
The symbol 0 stands for the real number 0 and {0} denotes the set whose only element is
0.

Next we review some important subsets of the real numbers. The set of all integers is
denoted by Z. In the set notation it is written as

Z =
{

. . . ,−3,−2,−1, 0, 1, 2, 3, . . .
}

.

Since we cannot list all the integers, we use the ellipses to indicate that the pattern continues
infinitely. The set of positive integers is denoted by N. In the set notation we can write
this set as follows

N =
{

1, 2, 3, . . .
}

=
{

x ∈ Z : x > 0
}

.

The synonym for “positive integer” is “natural number”. A rational number is any real
number that can be expressed as a fraction p/q where p is an integer and q is a positive
integer. The set of rational numbers is denoted by Q. In the set notation we can write this
set as follows

Q =
{

x ∈ R : x =
p

q
where p ∈ Z, q ∈ N

}

.

Further important subsets of R are intervals. Let a and b be real numbers such that
a < b. Here are all possible intervals with endpoints a and b.

[a, b] =
{

x ∈ R : a ≤ x ≤ b
}

is called a closed interval,

(a, b) =
{

x ∈ R : a < x < b
}

is called an open interval,

[a, b) =
{

x ∈ R : a ≤ x < b
}

is called a half-open interval,

(a, b] =
{

x ∈ R : a < x ≤ b
}

is called a half-open interval.
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6 1. LIMITS

The intervals above are called finite intervals. We also define four types of infinite intervals:

[a,+∞) =
{

x ∈ R : a ≤ x
}

is called a closed unbounded interval,

(a,+∞) =
{

x ∈ R : a < x
}

is called an open unbounded interval

(−∞, b] =
{

x ∈ R : x ≤ b
}

is called an unbounded closed interval,

(−∞, b) =
{

x ∈ R : x < b
}

is called an unbounded open interval.

Geometric illustrations of these intervals are given in Figures 1 through 8.

a b

Fig. 1. A closed interval

a b

Fig. 2. An open interval

a b

Fig. 3. A half-open interval

a b

Fig. 4. A half-open interval

a

Fig. 5. A closed infinite interval

a

Fig. 6. An open infinite interval

b

Fig. 7. An infinite closed interval

b

Fig. 8. An infinite open interval

The infinity symbols −∞ and +∞ are used to indicate that the set is unbounded in
the negative (−∞) or positive (+∞) direction of the real number line. The symbols −∞
and +∞ are just symbols; they are not real numbers. Therefore we always exclude them
as endpoints by using parentheses.

The set R is also an infinite interval. Sometimes it is written as (−∞,+∞).
Let S be a subset of R. If u is the smallest number in S, then u is called a minimum of

S and we write u = minS. If v is the greatest number in S, then v is called a maximum of S
and we write v = maxS. More formally, we express these definitions as logical statements:

u = minS if and only if u ∈ S and u ≤ x for all x ∈ S,

v = maxS if and only if v ∈ S and v ≥ x for all x ∈ S.

Notice that the set Z has neither a minimum nor a maximum. Also, the open interval
(a, b) has neither a minimum nor a maximum. The set N has no maximum and minN = 1.
Each finite subset of R has both a minimum and a maximum.

1.1. The Pizza-Party inequality. If a and b are positive real numbers the following
equivalence holds:

a ≤ b if and only if
1

b
≤ 1

a
.
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I call the preceding equivalence the “Pizza-Party inequality.” The rationale for this name
is that you can think of a and b as representing “sizes” of two parties. If each party is
sharing in one pizza, then the smaller party will result in more pizza for each attendee.
And conversely, if each attendee is getting less pizza, then they must be partaking in a
larger party.

Another version of “Pizza-Party inequality” is the following implication: If a, b, c and
d are positive real numbers, then the following implication holds:

a ≤ b and c ≤ d ⇒ c

b
≤ d

a
.

From a pizza-party perspective this implication is clear: If your objective is getting more
pizza, would you rather attend a smaller party which is sharing in a larger pizza or a larger
party sharing in a smaller pizza? Should this be taught in a math class, or kids learn that
in kindergarten?

Let us recall some basic properties of inequalities for real numbers:

Transitivity: For all a, b, c ∈ R we have a ≤ b and b ≤ c implies a ≤ c.
Respect for the addition: For all a, b, c ∈ R we have a ≤ b and c ≤ d implies

a+ c ≤ b+ d.
Respect for the multiplication: For all a, b, c ∈ R we have a ≤ b and 0 < c

implies ac ≤ bc.
Respect for the reciprocal: For all a ∈ R we have a > 0 implies 1

a > 0.

These properties will be used in solving problems and in proofs without explicitly men-
tioning them.
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2. Functions

2.1. The definition. Next we review the definition of a function. Let A and B be
sets. A function f from A to B is a rule that assigns exactly one element of B to each
element in A. This relationship between the sets A and B and the rule f is indicated by
the following notation: f : A → B. For x ∈ A the unique element of B which is assigned
to x by the function f is called the value of f at x. This element is denoted by f(x). The
set A is domain of f . The subset {f(x) ∈ B : x ∈ A} of B is the range of f .

In this class we are interested in functions for which both sets A and B are subsets of
the set of real numbers R. Some examples of such functions are given next.

2.2. The sign and the unit step function. Let sign : R → R be given by the
formula

sign(x) =









1 for x > 0,

0 for x = 0,

−1 for x < 0.

This function is called the sign function.
Let us : R → R be given by the formula

us(x) =

{

1 for x ≥ 0,

0 for x < 0.

This function is called the unit step function.

-2 -1 1 2

-1

1

Fig. 9. The sign function

-2 -1 1 2

-1

1

Fig. 10. The unit step function

Exercise 1.2.1. State clearly the domain and the range of the sign and the unit step
function.

Exercise 1.2.2. Prove that max{u, v} = v + (u− v) us(u− v) for all u, v ∈ R.

2.3. The floor and the ceiling function. The floor function, floor : R → R, is
defined by the formula

floor(x) = (x) = max
{

k ∈ Z : k ≤ x
}

.

It follows from the properties of the maximum that for an arbitrary x ∈ R we have the
following equivalence

m = (x) if and only if m ≤ x < m+ 1 and m ∈ Z.

Notice that the inequalities (x) ≤ x < (x)+ 1 are equivalent to

x− 1 < (x) ≤ x.
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-3 -2 -1 1 2 3

-3

-2

-1

1

2

3

Fig. 11. The floor function

-3 -2 -1 1 2 3

-3

-2

-1

1

2

3

Fig. 12. The ceiling function

The ceiling function, ceiling : R → R, is defined by the formula

ceiling(x) = *x+ = min{k ∈ Z : k ≥ x}.
It follows from the properties of the minimum that for an arbitrary x ∈ R we have the

following equivalence

n = *x+ if and only if n− 1 < x ≤ n and n ∈ Z.

Notice that the inequalities *x+ − 1 < x ≤ *x+ are equivalent to

x ≤ *x+ < x+ 1. (1.2.1)

Exercise 1.2.3. State clearly the domain and the range of the floor and the ceiling
function.

Exercise 1.2.4. Prove that for all x ∈ R we have

(2x) = (x)+ (x+ 1
2).

Discover and prove the analogous identity for the ceiling function.

2.4. The absolute value function.

Definition 1.2.5. Let abs : R → R be defined by the formula

abs(x) = |x| =

{

x if x ≥ 0,

−x if x < 0.

This function is called the absolute value function. For a given real number x the number
|x| is called the absolute value of x.

From calculus you are familiar with the geometric representation of real numbers as
points on a straight line. This is done by choosing a point on the line to represent 0 and
another point to represent 1. Then, every real number will correspond to a point on this
line (called the number line), and every point on the number line will correspond to a real
number. This geometric representation might be very helpful in doing problems.
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-3 -2 -1 1 2 3

1

2

3

Fig. 13. The absolute value function

Geometrically, the absolute value of a represents the distance between 0 and a, or,
generally |a− b| is the distance between the real numbers a and b on the number line.

Exercise 1.2.6. (a) Find all values of x such that |5x− 3| = 4.
(b) Find all values of x such that |5x− 3| < 4.
(c) Find all values of x such that |5x− 3| > 4.

Exercise 1.2.7. (a) Find all values of x such that |7x+ 3| = 5.
(b) Find all values of x such that |7x+ 3| < 5.
(c) Find all values of x such that |7x+ 3| > 5.

The basic properties of the absolute value are given in the following exercises.

Exercise 1.2.8. Prove the following statements.

(i) For all x ∈ R we have |x| = max{x,−x}.
(ii) |x| ≥ 0 for all x ∈ R.
(iii) |−x| = |x| for all x ∈ R.
(iv) −x ≤ |x| and x ≤ |x| for all x ∈ R.
(v) |xy| = |x||y| for all x, y ∈ R.

(vi)

∣
∣
∣
∣

x

y

∣
∣
∣
∣
=

|x|
|y| for all x, y ∈ R, y ,= 0.

Proof. To prove (i) we consider two cases. Case I. Assume x ≥ 0. Then−x ≤ 0. Since
−x ≤ 0 and 0 ≤ x, it follows that −x ≤ x. Therefore max{x,−x} = x. By Definition 1.2.5
for x ≥ 0 we have that abs(x) = x. Hence, we conclude that abs(x) = max{x,−x} in
this case. Case II. Assume x < 0. Then −x > 0. Since −x > 0 and 0 > x, it follows
that −x > x. Therefore max{x,−x} = −x. By Definition 1.2.5 for x < 0 we have that
abs(x) = −x. Hence, we conclude that abs(x) = max{x,−x} in this case.

Since Cases I and II include all real numbers x, the equality abs(x) = max{x,−x} is
proved.

The statement (ii) can also be proved by considering two cases.
To prove (iii) note that by (i) |x| = max{x,−x} and also |−x| = max{−x,−(−x)} =

max{−x, x}. Since max{x,−x} = max{−x, x}, we conclude that |x| = |−x|.
By the definition of max we have max{a, b} ≥ a and max{a, b} ≥ b for any real numbers

a and b. Therefore max{x,−x} ≥ x and max{x,−x} ≥ −x. Using (i) we conclude |x| ≥ x
and |x| ≥ −x. This proves (iv). !
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Exercise 1.2.9. Let x and y be real numbers. Prove that

max{x, y} =
1

2

(

x+ y + |x− y|
)

.

Exercise 1.2.10. Let x ∈ R and a > 0. Prove that |x| < a if and only if −a < x < a.

Exercise 1.2.11. (Triangle Inequality)

(a) Let a, b ∈ R. Prove that |a+ b| ≤ |a|+ |b|.
(b) Let x, y, z ∈ R. Prove that |x− y| ≤ |x− z|+ |z − y|.
(c) Let x, y ∈ R. Prove that

∣
∣|x|− |y|

∣
∣ ≤ |x− y|.

Proof. Proof of (a). By Exercise 1.2.8 (iv) we know that a ≤ |a| and b ≤ |b|. Therefore
we conclude that

a+ b ≤ |a|+ |b|. (1.2.2)

By Exercise 1.2.8 (iv) we know that −a ≤ |a| and −b ≤ |b|. Therefore we conclude

− (a+ b) = −a+ (−b) ≤ |a|+ |b|. (1.2.3)

The inequalities (1.2.2) and (1.2.3) imply

max{a+ b,−(a+ b)} ≤ |a|+ |b|. (1.2.4)

By Exercise 1.2.8 (i) the inequality (1.2.4) yields |a+ b| ≤ |a|+ |b|. This proves (a).
Prove (b) and (c) as an exercise. !

The inequalities in Exercise 1.2.11 are called the triangle inequalities.

Exercise 1.2.12. Let a, b, c be real numbers such that a ,= 0 and c > 0.

(a) Find all values of x such that |ax+ b| = c.
(b) Find all values of x such that |ax+ b| < c.
(c) Find all values of x such that |ax+ b| > c.

Exercise 1.2.13. Let a be a real number and let ε be a positive real number. Prove
that

|x− a| < ε if and only if x ∈ (a− ε, a+ ε).

2.5. New functions from old.

Definition 1.2.14. Given two functions f : A → B and g : A → B, with A,B ⊂ R,
and two real numbers α and β we form a new function αf + βg : A → B defined by

(αf + βg)(x) = a f(x) + β g(x), for all x ∈ A.

Notice that f(x) and g(x) are real numbers so that α f(x) and β g(x) in the above formula
is just a multiplication of real numbers. The function αf +βg is called a linear combination
of the functions f and g.

Definition 1.2.15. Given two functions f : A → B and g : A → B, with A,B ⊂ R we
form a new function fg : A → B defined by

(fg)(x) = f(x)g(x), for all x ∈ A.

Notice that f(x) and g(x) are real numbers so that f(x)g(x) in the above formula is just
a multiplication of real numbers. The function fg is called the product of the functions f
and g.
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Definition 1.2.16. Given two functions f : A → B and g : B → C a new function
g ◦ f : A → C is defined by

(g ◦ f)(x) = g(f(x)), x ∈ A.

The function g ◦ f is called the composition of the functions f and g.

Applying these definitions to familiar functions gives rise to new, sometimes very inter-
esting functions.

Exercise 1.2.17. For each of the functions given below answer the following questions:
(a) What are the domain and the range of the function? (b) Plot the function using your
graphing calculator. Plot the function by hand emphasizing the details missed by your
graphing calculator.

(a) x /→ x abs(x) (b) x /→ x(1− abs(x))
(c) x /→ x sign(x) (d) x /→ ceiling(x)− floor(x)
(e) x /→ x− floor(x) (f) x /→ xfloor(1/x)
(g) x /→ (1 + sign(x))/2 (h) x /→ x us(x)
(i) x /→ sign(abs(x)) (j) x /→ abs(sign(x))
(k) x /→ floor(abs(x)) (l) x /→ ceiling(abs(x))
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3. Limit of a function as x approaches +∞

3.1. The definition.

Definition 1.3.1. A function x /→ f(x) has the limit L as x approaches +∞ if the
following two conditions are satisfied:

(I) There exists a real number X0 such that f(x) is defined for every x ≥ X0.
(II) For every real number ε > 0 there exists a real number X(ε) ≥ X0 such that

x > X(ε) ⇒ |f(x)− L| < ε.

If the conditions (I) and (II) in Definition 1.3.1 are satisfied we write lim
x→+∞

f(x) = L.

L

L+ ε

L− ε

X(ε)

Fig. 14. An illustration for the condition (II) in Definition 1.3.1

3.2. Examples for Definition 1.3.1.

Example 1.3.2. Prove that lim
x→+∞

1√
x− 1

= 0.

Solution. We have to show that the conditions (I) and (II) in Definition 1.3.1 are
satisfied. First we have to provide X0. We can take X0 = 2, since if x ≥ 2, then x− 1 > 0
and 1/

√
x− 1 is defined.

Next we show that the condition (II) is satisfied. Let ε > 0 be given. We have to find a
real number X(ε) ≥ 2 such that

x > X(ε) ⇒
∣
∣
∣
∣

1√
x− 1

− 0

∣
∣
∣
∣
< ε. (1.3.1)

In some sense we have to solve the inequality
∣
∣
∣
∣

1√
x− 1

− 0

∣
∣
∣
∣
< ε.
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for x. The first step is to simplify it. Clearly
∣
∣
∣
∣

1√
x− 1

− 0

∣
∣
∣
∣
=

1√
x− 1

for x ≥ 2.

Thus we need to solve
1√
x− 1

< ε.

This inequality is solved for x by using the following sequence of algebraic steps:

1√
x− 1

< ε ⇔
√
x− 1 >

1

ε
⇔ x− 1 >

1

ε2
⇔ x >

1

ε2
+ 1. (1.3.2)

Since we need X(ε) ≥ 2, we choose X(ε) = max

{
1

ε2
+ 1, 2

}

.

It remains to prove that the implication (1.3.1) is satisfied. Assume that

x > X(ε). (1.3.3)

Since X(ε) ≥ 2, we conclude that x > 2. Therefore x − 1 > 0 and 1/
√
x− 1 is defined.

Since X(ε) ≥ 1/ε2 + 1, we conclude that

x >
1

ε2
+ 1.

Now the equivalences (1.3.2) imply that

1√
x− 1

< ε. (1.3.4)

Since 1/
√
x− 1 is positive we conclude that

1√
x− 1

=

∣
∣
∣
∣

1√
x− 1

∣
∣
∣
∣
=

∣
∣
∣
∣

1√
x− 1

− 0

∣
∣
∣
∣
. (1.3.5)

Combining (1.3.4) and (1.3.5), yields
∣
∣
∣
∣

1√
x− 1

− 0

∣
∣
∣
∣
< ε. (1.3.6)

Thus, we have proved that the assumption (1.3.3) implies the inequality (1.3.6). This is
exactly the implication (1.3.1). !

Example 1.3.3. Determine the limit of the function x /→ *x+
x

as x approaches +∞ and

prove your claim.

Solution. In Subsection 2.3, see (1.2.1), we established that x ≤ ceiling(x) < x + 1
for every real number x. Therefore, for large x, the value of ceiling(x) does not differ much
from x. Therefore it is reasonable to make the following claim

lim
x→+∞

*x+
x

= 1.

Next we will prove this claim using Definition 1.3.1. Since the function x /→ *x+
x

is defined

for all x ,= 0, we can take X0 = 1.
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Next we show that the condition (II) is satisfied. Let ε > 0 be given. We have to find a
real number X(ε) ≥ 1 such that

x > X(ε) ⇒
∣
∣
∣
∣

*x+
x

− 1

∣
∣
∣
∣
< ε. (1.3.7)

Solving for x the inequality
∣
∣
∣
∣

*x+
x

− 1

∣
∣
∣
∣
< ε (1.3.8)

is not easy. To find solutions of this inequality we first need to simplify it. In this process
of simplification we can replace the expression

∣
∣
∣
∣

*x+
x

− 1

∣
∣
∣
∣

with an expression which is greater or equal to it. By the definition of the ceiling function
we know that

x ≤ *x+ < x+ 1. (1.3.9)

Since we consider only x ≥ 1, we can divide by x in (1.3.9) and subtract 1 from each term
to get

0 ≤ *x+
x

− 1 <
x+ 1

x
− 1 =

1

x
.

Therefore ∣
∣
∣
∣

*x+
x

− 1

∣
∣
∣
∣
≤ 1

x
for all x ≥ 1. (1.3.10)

This inequality is the key step in this proof. Therefore I call it the BIg INequality, or BIN.
(Each of the proofs involving the definition of limit involves a BIN.) The importance of BIN
lies in the fact that instead of solving (1.3.8), we can solve for x the simpler inequality

1

x
< ε.

The solution of this inequality (remember x ≥ 1) is x >
1

ε
.

Now we can define X(ε) = max

{
1

ε
, 1

}

. With this X(ε) the implication (1.3.7) is true.

It is easy to prove this claim: Assume that

x > X(ε) = max

{
1

ε
, 1

}

.

Then x ≥ 1 and x >
1

ε
. Since x ≥ 1 the BIN inequality (see (1.3.10))

∣
∣
∣
∣

*x+
x

− 1

∣
∣
∣
∣
≤ 1

x

is true. Since also x >
1

ε
, we conclude that

1

x
< ε.

The last two displayed inequalities imply that
∣
∣
∣
∣

*x+
x

− 1

∣
∣
∣
∣
< ε.
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This proves the implication (1.3.7). !

Exercise 1.3.4. Determine whether the following functions have limits as x approaches
+∞. Prove your statements using the definition.

(a) x /→ x

3x− 2
(b) x /→ 2x

x2 + x+ 1
(c) x /→ x+ sin(x)

x− 1

(d) x /→ x2 + x

x3 + 3
(e) x /→ x3 − 2x2 + 1

x3 + x+ 101
(f) x /→

√
x+ 1−

√
x

(g) x /→ x2 + x cos(x)

x2 − x+ 5
(h) x /→

(
1

x

)1/ lnx

(i) x /→ x2 − 1

x2 + 2x sin(x)

(j) x /→ x−
√

x2 − x

Exercise 1.3.5. Guess the limit of the function x /→ ln

(

1 +
1

x

)x

and prove your

guess.
Hint: 1) Use the rules for logarithms to simplify the expression. 2) Use the representation
of the logarithm function u /→ ln(u) as an integral (area under the graph of the function
u /→ 1/u) to find an upper and lower bound for the given function x /→ ln

(

1 + 1
x

)x
for large

values of x. The bounds should be very simple functions of x.

3.3. Negative results. How can we prove that lim
x→+∞

f(x) = L is false? This means

that the condition (I) or the condition (II) in Definition 1.3.1 is not satisfied.
Next we formulate the negation of the condition (I): (In class I will explain how to

formulate negations of statements involving “for all” and “there exists”)

The negation of (I): For every X ∈ R there exists x ≥ X such that f(x) is not
defined.

π 2π 3π 4π 5π 6π 7π 8π 9π
-0.4

-0.2

0.0

0.2

0.4

Fig. 15. This function does not satisfy (I) in Definition 1.3.1

u ¥8
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Example 1.3.6. Prove that the function f(x) =
1

x sign
(

sin(x)
) does not satisfy the

condition (I) in Definition 1.3.1.

Solution. For this function the negation of (I) is true. This function is not defined for
all x = k π where k ∈ Z. To prove that the negation of (I) is true let X ∈ R be arbitrary.
Then

π ceiling
(

X/π
)

≥ X

and f(x) is not defined for x = π ceiling
(

X/π
)

.
See Figure 15 for the graph of f . Small circles in the figure indicate that this function

is not defined at x = π, 2π, 3π, . . . , 9π. !

The negation of the condition (II) is more complicated.
The negation of (II): There exists ε > 0 such that for every X ∈ R there exists x > X

such that |f(x)− L| ≥ ε.

Example 1.3.7. Prove that lim
x→+∞

sin(x) = 0 is false.

Solution. Let ε = 1/2. For arbitrary X ∈ R we have

π ceiling
(

X/π
)

+ π/2 > X

and, for x = π ceiling
(

X/π
)

+ π/2, we have | sin(x)| = 1. Therefore

| sin(x)− 0| ≥ 1/2. !

0 2 3 4 5 6 7

-1.5

-1

-0.5

0

0.5

1

1.5

2

πππππππ

Fig. 16. Illustration for the solution of Example 1.3.7

Now we consider the statement “ lim
x→+∞

f(x) does not exist.”

This means that for every L ∈ R, lim
x→+∞

f(x) = L is false.

Example 1.3.8. Prove that lim
x→+∞

sin(x) does not exist.
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Solution. Let L ∈ R be arbitrary. We need to prove that lim
x→+∞

sin(x) = L is false.

Consider three cases L = 0, L < 0 and L > 0. The case L = 0 is done in Example 1.3.7.
Now assume L < 0. Let ε = 1/2. For arbitrary X ∈ R we have

2π ceiling

(
X

2π

)

+
π

2
> X

and, for x = 2π ceiling
(
X
2π

)

+ π
2 , we have sin(x) = 1. Therefore

| sin(x)− L| = |1− L| = 1 + |L| ≥ 1/2.

Do the case L > 0 as an exercise. !

3.4. Infinite limits.

Definition 1.3.9. A function x /→ f(x) has the limit +∞ as x approaches +∞ if the
following two conditions are satisfied:

(I) There exists a real number X0 such that f(x) is defined for every x ≥ X0.
(II) For every real number M there exists a real number X(M) ≥ X0 such that

x > X(M) ⇒ f(x) > M.

In this case we write lim
x→+∞

f(x) = +∞.

Definition 1.3.10. A function x /→ f(x) has the limit −∞ as x approaches +∞ if the
following two conditions are satisfied:

(I) There exists a real number X0 such that f(x) is defined for every x ≥ X0.
(II) For every real number M there exists a real number X(M) ≥ X0 such that

x > X(M) ⇒ f(x) < M.

3.5. Examples of infinite limits.

Example 1.3.11. Let f(x) =
√
x. Prove that lim

x→+∞

√
x = +∞.

Solution. The function
√
· is defined for all x ≥ 0. Therefore we can take X0 = 0 in

the part (I) of the definition.
Now consider the part (II) of the definition. Let M ∈ R be arbitrary. we have to

determine a real number X(M) such that

x > X(M) ⇒
√
x > M.

This will be accomplished if we solve the inequality
√
x > M . If M < 0, then all x ≥ 0

satisfy this inequality. If M ≥ 0 then the solution of the inequality is x > M2. Thus, we
can take

X(M) =

{

M2 if M ≥ 0,

0 if M < 0 .

Clearly, X(M) ≥ 0 for all M ∈ R and

x > X(M) ⇒
√
x > M. !

Example 1.3.12. Let f(x) = floor(x). Prove that lim
x→+∞

floor(x) = +∞.
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Solution. The function floor is defined for all x ∈ R. Therefore we can take X0 = 0
in the part (I) of the definition.

Now consider the part (II) of the definition. Let M ∈ R be arbitrary. We have to
determine a real number X(M) ≥ X0 such that

x > X(M) ⇒ floor(x) > M. (1.3.11)

This will be accomplished if we solve the inequality

floor(x) > M. (1.3.12)

Since we don’t know much about floor it is not easy to solve (1.3.12). To achieve the
implication (1.3.11), we can replace floor(x) in (1.3.12) with a smaller quantity g(x) such
that g(x) > M is easy to solve. Thus we need g(x) such that

(A) floor(x) ≥ g(x) for all x > X0.
(B) g(x) > M is easy to solve.

By the definition of floor(x) we conclude that 0 ≤ x− floor(x) < 1 for all x ∈ R. Therefore

x− 1 < floor(x) for all x ∈ R. (1.3.13)

Clearly x− 1 > M is easy to solve: x > M +1. Thus, we can take X(M) = max{M +1, 0}
in the part (II) of the definition. Clearly X(M) ≥ X0 = 0. Let x > X(M). Then x > M+1
and therefore x− 1 > M . By the inequality (1.3.13) we conclude that

floor(x) > x− 1 > M.

Thus x > X(M) implies floor(x) > M . !

The key step in the solution of Example 1.3.12 was the discovery of the function g(x)
such that

(A) f(x) ≥ g(x) for all x > X0.
(B) g(x) > M is easy to solve.

Most proofs about limits follow this same pattern. Therefore I refer to the discovery of the
function g as a Big Inequality or BIN for short.

Exercise 1.3.13. Determine whether the following functions have the limit +∞ when
x approaches +∞.

(a) x /→ x2

2x+ 1
(b) x /→ lnx (c) x /→ x−

√
x

(d) x /→ x− ln(x) (e) x /→ x2 − x− 1

x+ 2
√
x+ 1

(f) x /→ 1

sin
(
1
x

)

(g) x /→
√

x−
√

x−
√
x (h) x /→ (cos x)2x√

x+ sin(x)
(j) x /→ (2 + cos(x))x√

x+ sin(x)
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4. Limit of a function at a real number a

4.1. The definition.

Definition 1.4.1. A function f has the limit L ∈ R as x approaches a real number a
if the following two conditions are satisfied:

(I) There exists a real number δ0 > 0 such that f(x) is defined for every x in the set
(

a− δ0, a
)

∪
(

a, a+ δ0
)

.
(II) For every real number ε > 0 there exists a real number δ(ε) such that 0 < δ(ε) ≤ δ0

and
0 < |x− a| < δ(ε) ⇒ |f(x)− L| < ε.

Remark 1.4.2. Notice that the condition that x belongs to the set
(

a−δ0, a
)

∪
(

a, a+δ
)

can be expressed in terms of the distance between x and a as: 0 < |x− a| < δ0.

Figure 17 illustrates Definition 1.4.1.

L

L+ ε

L− ε

a a+ δ(ε)a− δ(ε)

Fig. 17

Next we restate Definition 1.4.1 using the terminology of a calculator screen. The figure
below shows a fictional calculator screen with 35 pixels. We assume that ymin and ymax
are chosen in such a way that the number L is in the middle of the y-range and that xmin
and xmax are such that a is in the middle of the x-range.

In Definition 1.4.3 below we assume that the function f satisfies (I) in Definition 1.4.1.
We rephrase (II) from Definition 1.4.1 in terms of a calculator screen.

For the specific fictional calculator screen shown in Figure 18, the connection between
Definition 1.4.1 and Definition 1.4.3 is given by ε = (ymax − ymin)/8, xmin = a − δ(ε),
xmax = a+ δ(ε) and δ(ε) = ∆.

The fictional screen in Figure 18 is chosen for its simplicity. The screen of TI-92 (see
the manual p. 321) is 239 pixels wide and 103 pixels tall; it has 24617 pixels. The screen
of TI-83 (see the manual p. 8-16) and of TI-82 is 95 pixels wide and 63 pixels tall; it has
5985 pixels. The screen of TI-85 (see the manual p. 4-13) is 127 pixels wide and 63 pixels
tall; it has 8001 pixels. The screen of TI-89 (see the manual p. 222) is 159 pixels wide and

does .IT
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Definition 1.4.3 (Calculator
Screen). A function f has a limit
L as x approaches a for every
choice of ymin and ymax there
exists ∆ (which depends on ymin
and ymax) such that whenever we
choose xmin and xmax such that
xmax − xmin < 2∆ the graph of
the function f will appear to be a
straight horizontal line on the calcu-
lator screen with the only possible
exception at the pixel containing
x = a. xmin

a− δ(ε)
a xmax

a+ δ(ε)

ymin

L− ε

L
L+ ε

ymax

?

Fig. 18. A fictional calculator screen

77 pixels tall; it has 12243 pixels. Using these numbers you can calculate the connection
between ε and δ(ε) in Definition 1.4.1 and the screen of your calculator.

4.2. Examples for Definition 1.4.1.

Example 1.4.4. Prove lim
x→2

(3x− 1) = 5.

Solution. (I) Here f(x) = 3x − 1. This function is defined on R. We can take any
positive number for δ0. Since it might be useful to have a specific δ0 to work with, we set
δ0 = 1.

Let ε > 0 be given. Let δ(ε) = min{ε/3, 1}. Assume 0 < |x− 2| < δ(ε). Since δ(ε) ≤ ε/3,
we conclude that |x− 2| < ε/3. Next, we calculate

|(3x− 1)− 5| = |3x− 6| = 3 |x− 2| . (1.4.1)

It follows from the assumption 0 < |x− 2| < δ(ε) that |x− 2| < ε/3. Therefore we conclude

|(3x− 1)− 5| = 3 |x− 2| < 3
ε

3
= ε.

Thus we proved that

0 < |x− 2| < δ(ε) ⇒ |(3x− 1)− 5| < ε.

This is exactly the implication in (II) in Definition 1.4.1. Since ε > 0 was arbitrary this
completes the proof. !

Remark 1.4.5. How did we guess the formula for δ(ε) in the previous proof? We first
studied the implication in the statement (II) in Definition 1.4.1. The goal in that implication
is to prove

|(3x− 1)− 5| < ε.

To prove this inequality we need to assume something about |x − 2|. To find out what to
assume, we simplified the expression |(3x− 1)− 5| until |x−2| appeared (see (1.4.1)). Then
we solved for |x− 2|. In this process of simplification we can afford to make the right-hand
side larger. This will be illustrated in the next example.

Example 1.4.6. Prove lim
x→2

(

3x2 − 2x− 1
)

= 7.
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Solution. As usual, we first deal with (I). Again f(x) = 3x2 − 2x − 1 is defined on
R and we can take any positive number for δ0. Since it might be useful to have a specific
choice of δ0, we put δ0 = 1. (Notice that this implies that, from now on, we consider only
in the values of x which are in the set (1, 2) ∪ (2, 3).)

Next we will discover an inequality which will help us find a formula for δ(ε):

|(3x2 − 2x− 1)− 7| = |3x2 − 2x− 8| = |(3x+ 4)(x− 2)| = |3x+ 4| |x− 2|.

Now we use the fact that we are considering only the values of x which are in the set
(1, 2) ∪ (2, 3). For x ∈ (1, 2) ∪ (2, 3) the value of |3x+ 4| does not exceed 13. Therefore

|(3x2 − 2x− 1)− 7| ≤ 13 |x− 2| for all x ∈ (1, 2) ∪ (2, 3).

Let ε > 0 be given. The inequality 13 |x−2| < ε is easy to solve for |x−2|. The solution
is |x− 2| < ε/13. Now we define δ(ε):

δ(ε) = min
{ ε

13
, 1
}

.

The remaining step of the proof is to prove the implication

|x− 2| < δ(ε) ⇒ |(3x2 − 2x− 1)− 7| < ε.

We hope that at this point you can prove this implication on your own. !

Example 1.4.7. Prove lim
x→2

x3 − x− 4

x− 1
= 2.

Solution. We first deal with (I). Notice that the function f(x) =
x3 − x− 4

x− 1
is defined

on R\{1}. In this proof we are interested in the values of x near a = 2. Therefore, for δ0 we
can take any positive number which is smaller than 1. Since it is useful to have a specific
number, we put δ0 = 1/2. This implies that from now on we consider only the values of x
which are in the set (3/2, 2) ∪ (2, 5/2).

Next we will discover an inequality which will help us find a formula for δ(ε):
∣
∣
∣
∣

x3 − x− 4

x− 1
− 2

∣
∣
∣
∣
=

∣
∣
∣
∣

x3 − 3x− 2

x− 1

∣
∣
∣
∣
=

∣
∣
∣
∣

(x2 + 2x+ 1)(x− 2)

x− 1

∣
∣
∣
∣
=

∣
∣
∣
∣

x2 + 2x+ 1

x− 1

∣
∣
∣
∣
|x− 2|.

(1.4.2)
Now remember that we are interested only in the values of x which are in the set (3/2, 2)∪
(2, 5/2). For x ∈ (3/2, 2) ∪ (2, 5/2) we estimate

∣
∣
∣
∣

x2 + 2x+ 1

x− 1

∣
∣
∣
∣
=

x2 + 2x+ 1

x− 1
≤ 16

1/2
= 32 for all x ∈ (3/2, 2) ∪ (2, 5/2). (1.4.3)

Combining (1.4.2) and (1.4.3) we get
∣
∣
∣
∣

x3 − x− 4

x− 1
− 2

∣
∣
∣
∣
≤ 32 |x − 2| for all x ∈ (3/2, 2) ∪ (2, 5/2).

Let ε > 0 be given. The inequality 32 |x − 2| < ε is very easy to solve for |x− 2|. The
solution is |x− 2| < ε/32. Now we define δ(ε):

δ(ε) = min

{
ε

32
,
1

2

}

.

←Pizza- Party
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The remaining piece of the proof is to prove the implication

|x− 2| < δ(ε) ⇒
∣
∣
∣
∣

x3 − x− 4

x− 1
− 2

∣
∣
∣
∣
< ε.

We hope that at this point you can prove this on your own. Write down all the details of
your reasoning. !

Example 1.4.8. Prove lim
x→4

√
x = 2.

Solution. As usual, we first deal with (I). Notice that the function f(x) =
√
x is

defined on (0,+∞). We are interested in the values of x near the point a = 4. Thus, for δ0
we can take any positive number which is < 4. Since it is useful to have a specific number,
we put δ0 = 1. (Notice that this implies that from now on in this proof we are interested
only in the values of x which are in the set (3, 4) ∪ (4, 5).)

Next we will discover an inequality which will help us find a formula for δ(ε):

∣
∣
√
x− 2

∣
∣ =

∣
∣
∣
∣

(
√
x− 2)(

√
x+ 2)√

x+ 2

∣
∣
∣
∣
=

∣
∣
∣
∣

x− 4√
x+ 2

∣
∣
∣
∣
=

∣
∣
∣
∣

1√
x+ 2

∣
∣
∣
∣
|x− 4|. (1.4.4)

Now remember that we are interested only in the values of x which are in the set (3, 4)∪(4, 5).
For x ∈ (3, 4) ∪ (4, 5) we estimate

∣
∣
∣
∣

1√
x+ 2

∣
∣
∣
∣
=

1√
x+ 2

≤ 1√
3 + 2

≤ 1

2
for all x ∈ (3, 4) ∪ (4, 5). (1.4.5)

Combining (1.4.4) and (1.4.5) we get

∣
∣
√
x− 2

∣
∣ ≤ 1

2
|x− 4| for all x ∈ (3, 4) ∪ (4, 5).

Let ε > 0 be given. The inequality 1
2 |x− 4| < ε is easy to solve for |x− 4|. The solution

is |x− 4| < 2ε. Now define δ(ε):

δ(ε) = min {2ε, 1} .

The remaining step of the proof is to prove the implication

|x− 4| < min {2ε, 1} ⇒
∣
∣
√
x− 2

∣
∣ < ε.

We hope that at this point you can prove this on your own. As before, please do it and
write down the details of your reasoning. !

Example 1.4.9. Prove that for any a > 0, lim
x→a

1

x
=

1

a
.

Solution. Let a > 0. As before, we first deal with (I) in Definition 1.4.1. Notice that
the function f(x) = 1/x is defined on R \ {0}. We are interested in the values of x near the
point a > 0. Thus, for δ0 we can take any positive number which is < a. Since it is useful
to have a specific number, we put δ0 = a/2. (Notice that this implies that from now on in
this proof we are interested only in the values of x which are in the set (a/2, a)∪ (a, 3a/2).)

Next we will discover an inequality which will help us find a formula for δ(ε):
∣
∣
∣
∣

1

x
− 1

a

∣
∣
∣
∣
=

∣
∣
∣
∣

a− x

xa

∣
∣
∣
∣
=

|a− x|
xa

=
1

xa
|x− a| . (1.4.6)
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Now remember that we are interested only in the values of x which are in the set (a/2, a)∪
(a, 3a/2). For x ∈ (a/2, a) ∪ (a, 3a/2) we estimate

1

xa
≤ 1

(a/2)a
=

2

a2
for all x ∈ (a/2, a) ∪ (a, 3a/2). (1.4.7)

Combining (1.4.6) and (1.4.7) we get
∣
∣
∣
∣

1

x
− 1

a

∣
∣
∣
∣
≤ 2

a2
|x− a| for all x ∈ (a/2, a) ∪ (a, 3a/2).

Let ε > 0 be given. The inequality 2
a2 |x− a| < ε is easy to solve for |x−a|. The solution

is |x− a| < (a2/2)ε. Now define δ(ε):

δ(ε) = min

{
a2ε

2
,
a

2

}

.

The remaining step of the proof is to prove the implication

|x− a| < min

{
a2ε

2
,
a

2

}

⇒
∣
∣
∣
∣

1

x
− 1

a

∣
∣
∣
∣
< ε.

We hope that at this point you can prove this on your own. Write down the details of your
reasoning. !

Exercise 1.4.10. Find each of the following limits. Prove your claims using Defini-
tion 1.4.1.

(a) lim
x→3

(2x+ 1) (b) lim
x→1

(−3x− 7) (c) lim
x→1

(

4x2 + 3
)

(d) lim
x→2

x

x− 1
(e) lim

x→3

x2 − x+ 2

x+ 1
(f) lim

x→0
x1/3

(g) lim
x→0

(
1

|x|

)3/ ln|x|

(h) lim
x→0

tan x (i) lim
x→0

1

cos x

(j) lim
x→3

1

x
(k) lim

x→1

1

x2 + 1
(l) lim

x→−2

x

x2 + 4x+ 3

Exercise 1.4.11. Let f (x) =
x+ 1

x2 − 1
. Does f have a limit at a = 1? Justify your answer.

Exercise 1.4.12. Prove that for any a > 0, lim
x→a

√
x =

√
a.

4.3. Infinite limits.

Definition 1.4.13. A function f has the limit +∞ as x approaches a real number a
if the following two conditions are satisfied:

(I) There exists a real number δ0 > 0 such that f(x) is defined for every x in the set
(

a− δ0, a
)

∪
(

a, a+ δ0
)

.
(II) For every real number M > 0 there exists a real number δ(M) such that 0 <

δ(M) ≤ δ0 and

0 < |x− a| < δ(M) ⇒ f(x) > M.
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Definition 1.4.14. A function f has the limit −∞ as x approaches a real number a
if the following two conditions are satisfied:

(I) There exists a real number δ0 > 0 such that f(x) is defined for every x in the set
(

a− δ0, a
)

∪
(

a, a+ δ0
)

.
(II) For every real number M < 0 there exists a real number δ(M) such that 0 <

δ(M) ≤ δ0 and

0 < |x− a| < δ(M) ⇒ f(x) < M.

Exercise 1.4.15. Find each of the following limits. Prove your claims using the appro-
priate definition.

(a) lim
x→0

1

|x| (b) lim
x→−3

1

(x+ 3)2
(c) lim

x→2

x− 3

x(x− 2)2

(d) lim
x→−1

x

(x+ 1)4
(e) lim

x→+∞

x2 − x+ 2

x+ 1
(f) lim

x→+∞

x2 − x

3− x

4.4. One-sided limits.

Definition 1.4.16. A function f has the limit L ∈ R as x approaches a real number
a from the left if the following two conditions are satisfied:

(I) There exists a real number δ0 > 0 such that f(x) is defined for every x in the set
(

a− δ0, a
)

.
(II) For every real number ε > 0 there exists a real number δ(ε) such that 0 < δ(ε) ≤ δ0

and
0 < a− x < δ(ε) ⇒ |f(x)− L| < ε.

If the conditions (I) and (II) in Definition 1.4.16 are satisfied we write lim
x↑a

f(x) = L.

Definition 1.4.17. A function f has the limit L ∈ R as x approaches a real number
a from the right if the following two conditions are satisfied:

(I) There exists a real number δ0 > 0 such that f(x) is defined for every x in the set
(

a, a+ δ0
)

.
(II) For every real number ε > 0 there exists a real number δ(ε) such that 0 < δ(ε) ≤ δ0

and
0 < x− a < δ(ε) ⇒ |f(x)− L| < ε.

If the conditions (I) and (II) in Definition 1.4.17 are satisfied we write lim
x↓a

f(x) = L.

Definition 1.4.18. A function f has the limit +∞ as x approaches a real number a
from the left if the following two conditions are satisfied:

(I) There exists a real number δ0 > 0 such that f(x) is defined for every x in the set
(

a− δ0, a
)

.
(II) For every real number M > 0 there exists a real number δ(M) such that 0 <

δ(M) ≤ δ0 and

0 < a− x < δ(M) ⇒ f(x) > M.

If the conditions (I) and (II) in Definition 1.4.18 are satisfied we write lim
x↑a

f(x) = +∞.

Definition 1.4.19. A function f has the limit +∞ as x approaches a real number a
from the right if the following two conditions are satisfied:
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(I) There exists a real number δ0 > 0 such that f(x) is defined for every x in the set
(

a, a+ δ0
)

.
(II) For every real number M > 0 there exists a real number δ(M) such that 0 <

δ(M) ≤ δ0 and

0 < x− a < δ(M) ⇒ f(x) > M.

If the conditions (I) and (II) in Definition 1.4.19 are satisfied we write lim
x↓a

f(x) = +∞.

Definition 1.4.20. A function f has the limit −∞ as x approaches a real number a
from the left if the following two conditions are satisfied:

(I) There exists a real number δ0 > 0 such that f(x) is defined for every x in the set
(

a− δ0, a
)

.
(II) For every real number M < 0 there exists a real number δ(M) such that 0 <

δ(M) ≤ δ0 and

0 < a− x < δ(M) ⇒ f(x) < M.

If the conditions (I) and (II) in Definition 1.4.20 are satisfied we write lim
x↑a

f(x) = −∞.

Definition 1.4.21. A function f has the limit −∞ as x approaches a real number a
from the right if the following two conditions are satisfied:

(I) There exists a real number δ0 > 0 such that f(x) is defined for every x in the set
(

a, a+ δ0
)

.
(II) For every real number M < 0 there exists a real number δ(M) such that 0 <

δ(M) ≤ δ0 and

0 < x− a < δ(M) ⇒ f(x) < M.

If the conditions (I) and (II) in Definition 1.4.21 are satisfied we write lim
x↓a

f(x) = −∞.

Exercise 1.4.22. Find each of the following limits. Prove your claims using the appro-
priate definition.

(a) lim
x↑5

3x− 15√
x2 − 10x+ 25

(b) lim
x↓5

3x− 15√
x2 − 10x+ 25

(c) lim
x↑2

x− 3

x(x− 2)

(d) lim
x↓0

(
1

x
− 1

x2

)

(e) lim
x↑5

2√
5− x

(f) lim
x↓5

6

5− x

(g) lim
x↑3

x+ 3

x2 − 9
(h) lim

x↑−3

x2

x2 − 9
(i) lim

x↓0

(

x−
√
x
)

(j) lim
x→3

x

(x− 3)2
(k) lim

x↓−1

x2

x+ 1
(l) lim

x→+∞

(

x−
√
x
)
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5. New limits from old

5.1. Squeeze theorems. In this section and in Section 5.3 we establish general prop-
erties of limits which are based on the formal definition of limit. These properties are stated
as theorems.

Establishing theorems of this kind involves a major step forward in sophistication. Up
to this point we have been trying to show that limits exist directly from the definition. Now
for the first time we are going to assume that some limit exists (I refer to this in class as
a green limit.) and try to make use of this information to establish the existence of some
other limit (I refer to this in class as a red limit.). Remember that to establish the existence
of a limit, we had to come up with a procedure for finding δ(ε) that will work for any ε > 0
that is given. If we assume the existence of a limit, then we are assuming the existence of
such a procedure, though we may not know explicitly what it is. I refer to this as a green
δ(ε). It is this procedure we will need to use in order to construct a new procedure for the
limit whose existence we are trying to establish. I refer to this as a red δ(ε).

We start by considering squeeze theorems that resemble the role of BIN in previous
sections. The following theorem is the Sandwich Squeeze Theorem.

Theorem 1.5.1. Let f, g and h be given functions and let a and L be real numbers.
Suppose that the following three conditions are satisfied.

(1) lim
x→a

f(x) = L.

(2) lim
x→a

h(x) = L.

(3) There exists η0 > 0 such that f, g and h are defined on
(

a− η0, a
)

∪
(

a, a+ η0
)

and

f(x) ≤ g(x) ≤ h(x) for all x ∈
(

a− η0, a
)

∪
(

a, a+ η0
)

.

Then

lim
x→a

g(x) = L.

Proof. Here we have three functions and three definitions of limits, one for each func-
tion. Therefore we have to deal with three δ-s. We will give them appropriate names that
will distinguish them from each other. Let us name them δf , δg and δh.

In the theorem it is assumed that lim
x→a

f(x) = L. This means that we are given the fact

that for every ε > 0 there exists δf (ε) > 0 (that is, we are given a function δf (ε)) such that

0 < |x− a| < δf (ε) ⇒ |f(x)− L| < ε. (1.5.1)

In class I refer to these as a green δf (·) and a green implication.
Since the theorem assumes that lim

x→a
h(x) = L, we are also given that for every ε > 0

there exists δh(ε) > 0 such that

0 < |x− a| < δh(ε) ⇒ |h(x)− L| < ε. (1.5.2)

Again we refer to these as a green δh(·) and a green implication.
We need to prove that lim

x→a
g(x) = L. Therefore, following the definition of limit, we

have to show that the following conditions are satisfied:

(I) There exists a real number δ0,g > 0 such that g(x) is defined for every x in the set
(

a− δ0,g, a
)

∪
(

a, a+ δ0,g
)

.
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(II) For every real number ε > 0 there exists a real number δg(ε) such that 0 < δg(ε) ≤
δ0,g and such that

0 < |x− a| < δg(ε) ⇒ |g(x) − L| < ε. (1.5.3)

Since we have to produce δ0,g, δg(ε) and we have to prove the last implication, all of these
objects are red.

Notice that η0 in the theorem is green.
The objective here is to use the green objects to produce the red objects. We will do

that next. We put:

(I) δ0,g = η0. By the assumption of the theorem g(x) is defined for every x in the set
(

a− η0, a
)

∪
(

a, a+ η0
)

.
(II) For every real number ε > 0, put

δg(ε) = min
{

δf (ε), δh(ε), η0
}

.

This is a beautiful expression since the red object is expressed in terms of the green
objects.

It remains to prove the red implication (1.5.3) using the green implications and the
assumptions of the theorem.

To prove (1.5.3), assume that 0 < |x− a| < δg(ε). Then, clearly, 0 < |x − a| < η0.

This is telling me that x ,= a and that x is no further than η0 from a. Consequently,
x ∈

(

a− η0, a
)

∪
(

a, a+ η0
)

. Therefore, by the assumption of the theorem

f(x) ≤ g(x) ≤ h(x).

Subtracting L from each term in this inequality, we conclude that

f(x)− L ≤ g(x) − L ≤ h(x)− L.

Using the property of the absolute value that −|u| ≤ u ≤ |u| for every real number u, we
conclude that

− |f(x)− L| ≤ f(x)− L ≤ g(x)− L ≤ h(x)− L ≤ |h(x) − L|. (1.5.4)

From the assumption 0 < |x − a| < δg(ε), we conclude that 0 < |x − a| < δf (ε). By the
green implication (1.5.1), this implies that |f(x)− L| < ε and therefore

− ε < −|f(x)− L|. (1.5.5)

From the assumption 0 < |x − a| < δg(ε), we conclude that 0 < |x − a| < δh(ε). By the
green implication (1.5.2), this implies that

|h(x) − L| < ε. (1.5.6)

Putting together the inequalities (1.5.4), (1.5.5) and (1.5.6), we conclude that

− ε < g(x)− L < ε. (1.5.7)

The inequalities in (1.5.7) are equivalent to

|g(x) − L| < ε.

This proves that 0 < |x − a| < δg(ε) implies |g(x) − L| < ε and this is exactly the red
implication (1.5.3). This completes the proof. !

The following theorem is the Scissors Squeeze Theorem.
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Theorem 1.5.2. Let f, g and h be given functions and let a ∈ R and L ∈ R. Assume
that

(1) lim
x→a

f(x) = L.

(2) lim
x→a

h(x) = L.

(3) There exists η0 > 0 such that f, g and h are defined on
(

a− η0, a
)

∪
(

a, a+ η0
)

and

f(x) ≤ g(x) ≤ h(x) for all x ∈
(

a− η0, a
)

,

and

h(x) ≤ g(x) ≤ f(x) for all x ∈
(

a, a+ η0
)

.

Then

lim
x→a

g(x) = L.

5.2. Examples for squeeze theorems. Figure 19 and the numbers that you can see
on it are essential for getting squeezes for limits involving trigonometric functions. The
table to the left of Figure 19 shows the numbers that you should be able to identify on the
picture.

Geometric Associated
object number

Circular arc
from C to B u

Line segment OA cos u

Line segment AB sinu

Line segment AC 1− cos u

Line segment CB You calculate

Line segment CD tan u

Line segment OB 1

Line segment OC 1

O

1

1A

B

C

D

Fig. 19. The unit circle

Example 1.5.3. Prove that lim
x→0

cos x = 1.

Solution. Set η0 =
π

3
. Consider positive u. Look at the picture above. The triangle

3ACB is a right triangle. Therefore its hypothenuse, the line segment CB, is longer than
its side AC which equals to 1− cosu. Thus

1− cos u = AC ≤ CB. (1.5.8)
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The line segment CB is a segment of a straight line, therefore it is shorter than any
other curve joining C and B. In particular it is shorter than the circular arc joining the
points C and B. The length of this circular arc is u. Thus

CB ≤ Length of the Circular Arc from C to B ( = u ). (1.5.9)

Putting together the inequalities (1.5.8) and (1.5.9), we conclude that

1− cos u ≤ u for all 0 < u <
π

3
. (1.5.10)

Since the length OA = cos u is smaller than 1, from (1.5.10) we conclude that

0 ≤ 1− cosu ≤ u for all 0 < u <
π

3
,

or, equivalently,

1− u ≤ cos u ≤ 1 for all 0 < u <
π

3
,

Now we substitute u = |x| and use the fact that cos |x| = cos x and (5.2) becomes

1− |x| ≤ cos x ≤ 1 for all − π

3
< x <

π

3
.

This is a sandwich squeeze for cos x. It is easy to prove that lim
x→0

1 = 1 and lim
x→0

(

1− |x|
)

= 1.

(Please prove this using the definition!) Now the Sandwich Squeeze Theorem implies that
lim
x→0

cos x = 1. !

Example 1.5.4. Prove that lim
x→0

sinx

x
= 1.

Solution. To get a sandwich squeeze for this problem consider the following three
areas on the picture above.

Area 1 The triangle 3OCB .
Area 2 The sector of the unit disk bounded by the line segments OC and OB and the

circular arc joining points C and B.
Area 3 The triangle 3OCD .

The picture tells clearly the inequality between these areas. Write that inequality. Calculate
each area in terms of the numbers that appear in the table above. This will lead to the
inequality, which when simplified gives

cos u ≤ sinu

u
≤ 1 for all 0 < u <

π

3
. (1.5.11)

Using the same idea as in the previous example, the inequality (1.5.11) leads to

cos x ≤ sinx

x
≤ 1 for all x ∈

(

−π

3
, 0
)

∪
(

0,
π

3

)

. (1.5.12)

The inequality (1.5.12) is exactly what we need in the Sandwich Squeeze Theorem. Please
fill in all the details of the rest of the proof. !

Example 1.5.5. Prove that lim
x→0

1− cos x

x2
=

1

2
.

Solution. To establish squeeze inequlaities consider three lengths:

Length 1 The line segment AB .
Length 2 The line segment CB .
Length 3 The length of a circular arc joining the points C and B.

This is proving that
the derivative of sin ato is1

§ using L
'Hospital rule for this

limit is CIRCULAR reasicqg
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The picture tells clearly the inequalities between these three lengths. Write these inequal-
ities. Calculate each length in terms of the numbers that appear in the table above. This
will lead to the inequalities, which, when simplified, give

1

2

(
sinu

u

)2

≤ 1− cosu

u2
≤ 1

2
for all 0 < u <

π

3
. (1.5.13)

From the inequality (1.5.13) and one inequality established in a previous example you can
get an “easy” sandwich squeeze. Please fill in all the details of the rest of the proof. !

Example 1.5.6. Prove that lim
x→0

ln(1 + x)

x
= 1.

Solution. The idea is to use the definition of ln as an integral and work with areas
to get squeeze inequalities. !

5.3. Algebra of limits. A nickname that I gave to a function which has a limit L
when x approaches a is: f is constantish L near a. If we are dealing with constant functions
f(x) = L and g(x) = K, then clearly the sum f + g of these two functions is a constant
function equal to L+K. The same is true for the product fg which is the constant function
equal to LK. Another question is whether we can talk about the reciprocal 1/f . If L ,= 0,
then the reciprocal of f is defined and it equals 1/L. In this section we will prove that all
these properties hold for constantish functions.

Theorem 1.5.7. Let f, g, and h, be functions with domain and range in R. Let a, K
and L be real numbers. Assume that

(1) lim
x→a

f(x) = K,

(2) lim
x→a

g(x) = L.

Then the following statements hold.

(A) If h = f + g, then lim
x→a

h(x) = K + L.

(B) If h = fg, then lim
x→a

h(x) = KL.

(C) If L ,= 0 and h =
1

g
, then lim

x→a
h(x) =

1

L
.

(D) If L ,= 0 and h =
f

g
, then lim

x→a
h(x) =

K

L
.

Proof. The assumption lim
x→a

f(x) = K implies that

green(I-f) There exists (green!) δ0,f > 0 such that f(x) is defined for all x in
(

a −
δ0,f , a

)

∪
(

a, a+ δ0,f
)

;
green(II-f) For every ε > 0 there exists (green!) δf (ε) such that 0 < δf (ε) ≤ δ0,f and such

that
0 < |x− a| < δf (ε) ⇒ |f(x)−K| < ε. (1.5.14)

The assumption lim
x→a

g(x) = L implies that

green(I-g) There exists (green!) δ0,g > 0 such that g(x) is defined for all x in
(

a−δ0,g, a
)

∪
(

a, a+ δ0,g
)

;
green(II-g) For every ε > 0 there exists (green!) δg(ε) such that 0 < δg(ε) ≤ δ0,g and such

that
0 < |x− a| < δg(ε) ⇒ |g(x)− L| < ε. (1.5.15)

foe → regulate;haaFpnof !
h

h
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Proof of the statement (A). Remember that h(x) = f(x) + g(x) here. First we list what is
red in this proof.

red(I-h) There exists (red!) δ0,h > 0 such that h(x) is defined for all x in
(

a− δ0,h, a
)

∪
(

a, a+ δ0,h
)

;
red(II-h) For every ε > 0 there exists (red!) δh(ε) such that 0 < δh(ε) ≤ δ0,h and such

that

0 < |x− a| < δh(ε) ⇒ |h(x) − (K + L)| < ε. (1.5.16)

I will not elaborate here how I got the idea for δ0,h and δh(ε), I will just give formulas
and convince you that my choice is a correct one. The idea for the formulas comes from the
boxed paragraph on page 33. I invite you to enjoy the separation of colors in the following
formulas.

Let ε > 0 be given. Put

δ0,h = min {δ0,f , δ0,g}

δh(ε) = min
{

δf
( ε

2

)

, δg
( ε

2

)}

Now we have to prove that h(x) is defined for every x ∈
(

a − δ0,h, a
)

∪
(

a, a + δ0,h
)

.
Assume that x ∈

(

a− δ0,h, a
)

∪
(

a, a+ δ0,h
)

. Then

0 < |x− a| < δ0,h ≤ min {δ0,f , δ0,g} . (1.5.17)

It follows from (1.5.17) that

0 < |x− a| < δ0,f ,

and therefore x ∈
(

a − δ0,f , a
)

∪
(

a, a + δ0,f
)

. Thus f(x) is defined. It also follows from
(1.5.17) that

0 < |x− a| < δ0,g,

and therefore x ∈
(

a − δ0,g, a
)

∪
(

a, a + δ0,g
)

. Thus g(x) is defined. Therefore h(x) =
f(x) + g(x) is defined for every x ∈

(

a− δ0,h, a
)

∪
(

a, a+ δ0,h
)

.
Now we will prove the red implication (1.5.16). Assume

0 < |x− a| < δh(ε) = min
{

δf
( ε

2

)

, δg
( ε

2

)}

. (1.5.18)

Then

0 < |x− a| < δf
( ε

2

)

. (1.5.19)

The inequality (1.5.19) and the implication (1.5.14) allow me to conclude that

|f(x)−K| < ε

2
. (1.5.20)

It follows from (1.5.18) that

0 < |x− a| < δg
( ε

2

)

. (1.5.21)

The inequality (1.5.21) and the implication (1.5.15) allow me to conclude that

|g(x)− L| < ε

2
. (1.5.22)
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Now we remember that the absolute value has the property that |u + v| ≤ |u| + |v|.
We will apply this to the expression

|h(x)− (K + L)| = |f(x) + g(x)−K − L| = |(f(x)−K)
︸ ︷︷ ︸

u

+ (g(x) − L)
︸ ︷︷ ︸

v

|

to get
|h(x) − (K + L)| ≤ |f(x)−K|+ |g(x) − L|. (1.5.23)

This inequality plays a role of a BIN in this abstract proof. It has an unfriendly object
on the left and all friendly objects on the right.

The inequalities (1.5.20), (1.5.22) and (1.5.23) imply that

|h(x)− (K + L)| < ε

2
+

ε

2
= ε. (1.5.24)

Reviewing my reasoning above you should be convinced that based on the assumption
(1.5.18) we proved the inequality (1.5.24). This is exactly the implication (1.5.16). This
completes the proof of the statement (A).

Proof of the statement (B). Remember that h(x) = f(x)g(x) here. We first list what is red
in this proof.

red(I-h) There exists (red!) δ0,h > 0 such that h(x) is defined for all x in
(

a− δ0,h, a
)

∪
(

a, a+ δ0,h
)

;
red(II-h) For every ε > 0 there exists (red!) δh(ε) such that 0 < δh(ε) ≤ δ0,h and such

that
0 < |x− a| < δh(ε) ⇒ |h(x) −KL| < ε. (1.5.25)

I will not elaborate how I got the idea for δ0,h and δh(ε), I will just give formulas and
convince you that my choice is a correct one. The idea for the formulas comes from the
boxed paragraph on page 34. Again, I invite you to enjoy the separation of colors in the
following formulas.

Let ε > 0 be given. Put

δ0,h = min {δ0,f , δg(1)}

δh(ε) = min

{

δf

(
ε

2(|L|+ 1)

)

, δg

(
ε

2(|K|+ 1)

)}

.

Now we have to prove that h(x) is defined for every x ∈
(

a − δ0,h, a
)

∪
(

a, a + δ0,h
)

.
Assume that x ∈

(

a− δ0,h, a
)

∪
(

a, a+ δ0,h
)

. Then

0 < |x− a| < δ0,h ≤ min {δ0,f , δg(1)} . (1.5.26)

It follows from (1.5.26) that
0 < |x− a| < δ0,f ,

and therefore x ∈
(

a − δ0,f , a
)

∪
(

a, a + δ0,f
)

. Thus f(x) is defined. It also follows from
(1.5.26) that

0 < |x− a| < δg(1). (1.5.27)

Since by the assumption (II-g) we know that δg(1) ≤ δ0,g, the inequality (1.5.27) implies
that

0 < |x− a| < δ0,g.

Therefore x ∈
(

a− δ0,g, a
)

∪
(

a, a+ δ0,g
)

. Thus g(x) is defined. Therefore h(x) = f(x)g(x)
is defined for every x ∈

(

a− δ0,h, a
)

∪
(

a, a+ δ0,h
)

.
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At this point we will prove another consequence of the inequality (1.5.27). This inequal-
ity and the implication (1.5.15) allow me to conclude that

|g(x)− L| < 1.

Therefore
−1 < g(x) − L < 1 ,

or, equivalently
−1 + L < g(x) < L+ 1.

Multiplying the last inequality by −1, we conclude that

−1− L < −g(x) < −L+ 1.

From the last two inequalities we conclude that max{g(x),−g(x)} < max{L+1,−L+1} =
max{L,−L}+ 1. Thus

|g(x)| < |L|+ 1. (1.5.28)

Now we will prove the red implication (1.5.25). Assume

0 < |x− a| < δh(ε) = min

{

δf

(
ε

2(|L| + 1)

)

, δg

(
ε

2(|K| + 1)

)}

. (1.5.29)

Then

0 < |x− a| < δf

(
ε

2(|L| + 1)

)

. (1.5.30)

The inequality (1.5.30) and the implication (1.5.14) allow me to conclude that

|f(x)−K| < ε

2(|L|+ 1)
. (1.5.31)

It follows from (1.5.29) that

0 < |x− a| < δg

(
ε

2(|K|+ 1)

)

. (1.5.32)

The inequality (1.5.32) and the implication (1.5.15) allow me to conclude that

|g(x) − L| < ε

2(|K|+ 1)
. (1.5.33)

Now we remember that the absolute value has the property that |u + v| ≤ |u| + |v|
and that |uv| = |u||v|. we will apply these properties to the expression

|h(x) −KL| =
∣
∣f(x)g(x)−KL

∣
∣ =

∣
∣
(

f(x)g(x) −Kg(x)
)

︸ ︷︷ ︸

u

+
(

Kg(x)−KL
)

︸ ︷︷ ︸

v

∣
∣

≤
∣
∣f(x)g(x)−Kg(x)

)∣
∣+
∣
∣Kg(x)−KL

∣
∣

≤
∣
∣g(x)

∣
∣
∣
∣f(x)−K

∣
∣+ |K|

∣
∣g(x)− L

∣
∣.

Summarizing
∣
∣h(x)−KL

∣
∣ ≤

∣
∣g(x)

∣
∣
∣
∣f(x)−K

∣
∣+ |K|

∣
∣g(x)− L

∣
∣. (1.5.34)

The inequalities (1.5.28) and (1.5.34) imply that
∣
∣h(x)−KL

∣
∣ ≤

(

|L|+ 1
) ∣
∣f(x)−K

∣
∣+ |K|

∣
∣g(x)− L

∣
∣. (1.5.35)

This inequality plays a role of a BIN in this abstract proof. It has an unfriendly object
on the left and all friendly objects on the right.
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The inequalities (1.5.31), (1.5.33) and (1.5.35) imply that

|h(x)− LK| ≤
(

|L|+ 1
) ε

2(|L| + 1)
+ |K| ε

2(|K|+ 1)
<

ε

2
+

ε

2
= ε. (1.5.36)

I hope that my reasoning above convinces you that the assumption (1.5.29) implies the
inequality (1.5.36). This is exactly the implication (1.5.25). This completes the proof of
the part (B).

Proof of the statement (C). Here we assume that L ,= 0 and h(x) =
1

g(x)
. Next we list what

is red in this proof.

red(I-h) There exists (red!) δ0,h > 0 such that h(x) is defined for all x in
(

a− δ0,h, a
)

∪
(

a, a+ δ0,h
)

;
red(II-h) For every ε > 0 there exists (red!) δh(ε) such that 0 < δh(ε) ≤ δ0,h and such

that

0 < |x− a| < δh(ε) ⇒
∣
∣
∣
∣

1

g(x)
− 1

L

∣
∣
∣
∣
< ε. (1.5.37)

I will not elaborate how I got the idea for δ0,h and δh(ε), I will just give formulas and
convince you that my choice is a correct one. The idea for the formulas comes from the
boxed paragraph on page 36. Again, I invite you to enjoy the separation of colors in the
following formulas.

Let ε > 0 be given. Remember that it is assumed that |L| > 0. Put

δ0,h = δg

(
|L|
2

)

δh(ε) = min

{

δg

(
εL2

2

)

, δg

(
|L|
2

)}

.

Now we have to prove that h(x) is defined for every x ∈
(

a − δ0,h, a
)

∪
(

a, a + δ0,h
)

.
Assume that x ∈

(

a− δ0,h, a
)

∪
(

a, a+ δ0,h
)

. Then

0 < |x− a| < δ0,h = δg

(
|L|
2

)

.

This inequality and the implication (1.5.15) allow me to conclude that

|g(x) − L| < |L|
2
.

Therefore

− |L|
2

< g(x) − L <
|L|
2

,

or, equivalently

− |L|
2

+ L < g(x) < L+
|L|
2
.

Multiplying the last inequality by −1, we conclude that

−L− |L|
2

< −g(x) <
|L|
2

− L.

From the last two displayed relationships we conclude that

max{g(x),−g(x)} > max

{

L− |L|
2
,−L− |L|

2

}

= max{L,−L}− |L|
2
.
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Thus

|g(x)| > |L|− |L|
2

=
|L|
2

> 0. (1.5.38)

Consequently, g(x) ,= 0. Therefore, h(x) =
1

g(x)
is defined for all x ∈

(

a− δ0,h, a
)

∪
(

a, a+

δ0,h
)

.
Now we will prove the red implication (1.5.37). Assume

0 < |x− a| < δh(ε) = min

{

δg

(
εL2

2

)

, δg

(
|L|
2

)}

. (1.5.39)

Then

0 < |x− a| < δg

(
εL2

2

)

. (1.5.40)

The inequality (1.5.40) and the implication (1.5.15) allow me to conclude that

|g(x) − L| < εL2

2
. (1.5.41)

It also follows from (1.5.39) that

0 < |x− a| < δg

(
|L|
2

)

.

We already proved that this inequality implies (1.5.38). Therefore

1

|g(x)| <
2

|L| . (1.5.42)

This inequality is used at the last step in the sequence of inequalities below. In some sense
this is an abstract version of a “pizza-party” play.

Using our standard tools, algebra, properties of the absolute value and the inequality
(1.5.42) we get

∣
∣
∣
∣
h(x)− 1

L

∣
∣
∣
∣
=

∣
∣
∣
∣

1

g(x)
− 1

L

∣
∣
∣
∣
=

∣
∣
∣
∣

L− g(x)

g(x)L

∣
∣
∣
∣
=

|L− g(x)|
|g(x)| |L|

=
|g(x) − L|
|g(x)| |L| ≤

1

|g(x)|
|g(x) − L|

|L| ≤ 2

|L|
|g(x)− L|

|L| .

Summarizing ∣
∣
∣
∣

1

g(x)
− 1

L

∣
∣
∣
∣
≤ 2

L2
|g(x) − L| . (1.5.43)

This inequality plays a role of a BIN in this abstract proof. It has an unfriendly object
on the left and all friendly objects on the right.

The inequalities (1.5.41) and (1.5.43) imply that
∣
∣
∣
∣

1

g(x)
− 1

L

∣
∣
∣
∣
≤ 2

L2

εL2

2
= ε. (1.5.44)

I hope that the reasoning above convinces you that the assumption (1.5.39) implies the
inequality (1.5.44). This is exactly the implication (1.5.37). This completes the proof of
the part (C).
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Proof of the statement (D). Here we assume that L ,= 0 and h(x) =
f(x)

g(x)
. We can prove

the statement (D) by using the universal power of the statements (B) and (C). First define

the functions g1(x) =
1

g(x)
. Then, by the statement (C) we know

lim
x→a

g1(x) =
1

L
. (1.5.45)

Clearly, h(x) = f(x)g1(x). Now we can apply the statement (B) to this function h. Taking
into account (1.5.45) the statement (B) implies

lim
x→a

h(x) = K
1

L
=

K

L
.

This completes the proof of the statement (D). The theorem is proved. !

Exercise 1.5.8. Use the algebra of limits to give much simpler proofs for most of the
limits in the previous exercises and examples.
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6. Continuous functions

6.1. The definition and examples. All this work about limits will now pay off since
we will be able to give mathematically rigorous definition of a continuous function.

Definition 1.6.1. Let f be a real valued function of a real variable and let a be a real
number. The function f is continuous at a if the following two conditions are satisfied:

(i) The function f is defined at a, that is f(a) is defined.
(ii) lim

x→a
f(x) = f(a).

To understand Definition 1.6.1 the reader has to understand the concept of limit. Some-
times it is useful to state the definition of continuity directly, without appealing to the
concept of limit.

Definition 1.6.2. Let f be a real valued function of a real variable and let a be a real
number. The function f is continuous at a if the following two conditions are satisfied:

(I) There exists a δ0 > 0 such that f(x) is defined for all x ∈ (a− δ0, a+ δ0).
(II) For every ε > 0 there exists δ(ε) such that 0 < δ(ε) ≤ δ0 and such that

|x− a| < δ(ε) ⇒ |f(x)− f(a)| < ε.

Definition 1.6.2 is called ε-δ definition of continuity.

Definition 1.6.3. Let I be an interval in R. A function f is continuous on I if it is
continuous at each point in I.

Example 1.6.4. Let c be a real number and define f(x) = c for all x ∈ R. Use
Definition 1.6.2 to prove that f is continuous at an arbitrary real number a.

Example 1.6.5. Let f(x) = x for all x ∈ R. Use Definition 1.6.2 to prove that f is
continuous at an arbitrary real number a.

Example 1.6.6. Use ε-δ definition of continuity, that is Definition 1.6.2, to prove that
the function f(x) = 1/x is continuous on the interval (0,+∞).

Solution. Let a ∈ (0,+∞), that is let a be an arbitrary positive number. Chose
δ0 = a/2. Since a > 0, we conclude that a/2 > 0 and f(x) = 1/x is defined for all
x ∈

(

a/2, 3a/2
)

.
Let ε > 0 be arbitrary. Now we have to solve

∣
∣
∣
∣

1

x
− 1

a

∣
∣
∣
∣
< ε for |x− a|.

First simplify the expression, using the fact that x > 0 and a > 0 and rules for the absolute
value: ∣

∣
∣
∣

1

x
− 1

a

∣
∣
∣
∣
=

∣
∣
∣
∣

a− x

x a

∣
∣
∣
∣
=

|a− x|
|x| |a| =

|x− a|
x a

.

To get a larger expression which will be easy to solve we replace x in the denominator by
the smallest possible value for x. That value is a− a/2 = a/2. This gives me my BIN:

∣
∣
∣
∣

1

x
− 1

a

∣
∣
∣
∣
=

|x− a|
x a

≤ |x− a|
a

2
a

= 2
|x− a|
a2

.

Thus my BIN is

∣
∣
∣
∣

1

x
− 1

a

∣
∣
∣
∣
≤ 2

|x− a|
a2

valid for all x ∈
(

a/2, 3a/2
)

.

Rigorous. of
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Solving the inequality 2
|x− a|
a2

< ε for |x− a| is easy. The solution is |x− a| < a2 ε/2.

Now we define

δ(ε) = min

{
a2 ε

2
,
a

2

}

.

To finish the proof, it remains to prove the implication

|x− a| < δ(ε) ⇒
∣
∣
∣
∣

1

x
− 1

a

∣
∣
∣
∣
< ε.

This should be easy, using the BIN. !

Example 1.6.7. Use ε-δ definition of continuity, that is Definition 1.6.2, to prove that
the function x /→

√
x is continuous on the interval (0,+∞).

Solution. Let a ∈ (0,+∞). Chose δ0 =
a

2
. Since a > 0, as before we conclude that

a

2
> 0 and the function x /→

√
x is defined for all x ∈ (a/2, 3a/2).

Let ε > 0 be arbitrary. Now we have to solve
∣
∣
√
x−

√
a
∣
∣ < ε for |x− a|.

First simplify algebraically the expression, using the fact that x > 0 and a > 0 and rules
for the absolute value.

∣
∣
√
x−

√
a
∣
∣ =

∣
∣
∣
∣

(√
x−

√
a
) 1

1

∣
∣
∣
∣
=

∣
∣
∣
∣

(√
x−

√
a
)
√
x+

√
a√

x+
√
a

∣
∣
∣
∣
=

∣
∣
∣
∣

x− a√
x+

√
a

∣
∣
∣
∣

=
|x− a|

|
√
x+

√
a|

=
|x− a|√
x+

√
a
≤ |x− a|√

a

Thus my BIN is:
∣
∣
√
x−

√
a
∣
∣ ≤ |x− a|√

a
, valid for x > 0.

Solving
|x− a|√

a
< ε for |x− a| is easy: The solution is |x− a| <

√
a ε. Now we define

δ(ε) = min
{√

a ε,
a

2

}

.

It remains to prove the implication |x− a| < min
{√

a ε,
a

2

}

⇒ |
√
x−

√
a| < ε. This

should be easy, using the BIN. !

Example 1.6.8. Let f(x) =
1

x2 + 1
for all x ∈ R. Use ε-δ definition to prove that f is

continuous at an arbitrary a ∈ R.

Example 1.6.9. Let a, b, c be any real numbers. Let f(x) = ax2 + bx+ c for all x ∈ R.
Let v be an arbitrary real number. Prove that f is continuous at v.

Example 1.6.10. Let f(x) = sinx for all x ∈ R. Prove that f is continuous at an
arbitrary real number a.

Example 1.6.11. Let f(x) = cos x for all x ∈ R. Prove that f is continuous at an
arbitrary real number a.
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Hint for Exercises 1.6.10 and 1.6.11. Let A = (x1, y1) and B = (x2, y2) be two points in
the xy-plane. Then the length of the line segment AB is given by

AB =
√

(x1 − x2)2 + (y1 − y2)2.

Consequently

|x1 − x2| ≤ AB and |y1 − y2| ≤ AB.

Let u and v be real numbers and set A = (cos u, sinu), B = (cos v, sin v). The last displayed
inequalities now imply

| cos u− cos v| ≤ AB and | sinu− sin v| ≤ AB.

Recall that the points A and B are on the unit circle. Any two points on the unit circle
determine two arcs. Denote by AB

⌢
the length of the shorter circular arc determined by

A and B. Since the shortest path between two points is a straight line we have that
AB < AB

⌢

. How is the arc length AB
⌢

related to the numbers u and v? First, if |u− v| ≤ π,
then AB

⌢
= |u − v|. Second, if |u − v| > π, then AB

⌢ ≤ π < |u − v|. Hence in each case
AB
⌢ ≤ |u− v|. Thus we have established inequalities

| cos u− cos v| ≤ AB ≤ AB
⌢ ≤ |u− v|,

| sinu− sin v| ≤ AB ≤ AB
⌢ ≤ |u− v|,

for arbitrary real numbers u and v. These inequalities can be used to solve Exercises 1.6.10
and 1.6.11. The end of the Hint.

Example 1.6.12. Let f(x) = lnx for all x ∈ (0,+∞). Prove that f is continuous on its
domain.

Solution. First we recall the inequality

1− 1

v
≤ ln v ≤ v − 1 valid for all v > 0, (1.6.1)

which we proved using the integral definition of ln.
An inequality for | ln v| will be useful in the proof of the continuity below. Such an

inequality can be obtained from the inequality in (1.6.1) by considering two cases:

| ln v| ≤
{

v − 1 if 1 ≤ v

−
(
1− 1

v

)
if 0 < v < 1

}

=

{

v − 1 if 1 ≤ v

− v−1
v if 0 < v < 1

}

=

{ |v − 1| if 1 ≤ v

|v−1|
v if 0 < v < 1

}

.

Next we will restrict v to the interval (1/2, 3/2). That is we assume v ∈ (1/2, 3/2).
Then we have that |v − 1|/v ≤ 2|v − 1|. Since always |v − 1| ≤ 2|v − 1|, we have that

| ln v| ≤ 2|v − 1| is valid for all v ∈ (1/2, 3/2). (1.6.2)

Let a > 0 be arbitrary. Let x ∈ (a/2, 3a/2). Then x/a ∈ (1/2, 3/2) and we can simplify
the expression | lnx−ln a| which appears in the definition of continuity. In the next sequence
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of inequalities we first use a property of logarithm, then the inequality in (1.6.2) and simple
algebra to get:

| lnx− ln a| =
∣
∣
∣ln

x

a

∣
∣
∣

≤ 2
∣
∣
∣
x

a
− 1
∣
∣
∣

= 2

∣
∣
∣
∣

x− a

a

∣
∣
∣
∣

= 2
|x− a|

a

=
2

a
|x− a|.

Thus, we proved that

| ln x− ln a| ≤ 2

a
|x− a| is valid for all x ∈ (a/2, 3a/2). (1.6.3)

To finish the proof of continuity let ε > 0 be arbitrary and set

δ(ε) = min
{aε

2
,
a

2

}

.

Clearly δ(ε) > 0. Next we will prove the implication

|x− a| < min
{aε

2
,
a

2

}

⇒ | lnx− ln a| < ε.

Assume |x − a| < min
{
aε
2 ,

a
2

}

. Then |x − a| < aε
2 and |x − a| < a

2 . Since |x − a| < a
2 , we

have x ∈ (a/2, 3a/2) and therefore, by (1.6.3), we have

| lnx− ln a| ≤ 2

a
|x− a|.

Since |x− a| < aε
2 we have

2

a
|x− a| < ε.

The last two displayed inequalities yield

| lnx− ln a| < ε.

This completes the proof of the continuity of the logarithm function ln. !

Example 1.6.13. Let f(x) = ex for all x ∈ R. Prove that f is continuous at an arbitrary
real number a.

Solution. We first substitute v = exp u = eu in (1.6.1) to get

1− 1

eu
≤ ln eu ≤ eu − 1 is valid for all u ∈ R.

Simplifying we get

1− 1

eu
≤ u ≤ eu − 1.

We need a squeeze for eu. Above we already have one side of the squeeze. That is u+1 ≤ eu.
To get the other side we transform

1− 1

eu
≤ u
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to

1− u ≤ 1

eu
.

To get a useful inequality we need to take the reciprocals in the last inequality. For that
we need 1− u > 0. That is we need to assume that u < 1. Assuming that u < 1 we have

eu ≤ 1

1− u
.

Together with u+ 1 ≤ eu, we proved that

u+ 1 ≤ eu ≤ 1

1− u
is valid for all u < 1. (1.6.4)

An inequality for |eu − 1| will be useful in the proof of the continuity below. The
inequalities in (1.6.4) yield that

u ≤ eu − 1 ≤ u

1− u
is valid for all u < 1.

To get an inequality for |eu − 1| we consider two cases:

|eu − 1| ≤
{ u

1−u if 0 ≤ u < 1
−u if u < 0

}

=

{ |u|
1−u if 0 ≤ u < 1
|u| if u < 0

}

Next we will restrict u to the interval (−1/2, 1/2). That is we assume u ∈ (−1/2, 1/2).
Then we have that |u|/(1 − u) ≤ 2|u|. Since always |u| ≤ 2|u|, we have that

|eu − 1| ≤ 2|u| is valid for all u ∈ (−1/2, 1/2). (1.6.5)

Let a > 0 be arbitrary. Let x ∈ (a − 1/2, a + 1/2). Then x − a ∈ (−1/2, 1/2) and we
can simplify the expression |ex − ea| which appears in the definition of continuity. For that
we use a property of the exponential function and (1.6.5) to get:

|ex − ea| = ea|e(x−a) − 1| ≤ 2ea|x− a|.
Thus, we proved that

|ex − ea| ≤ 2ea|x− a| is valid for all x ∈ (a− 1/2, a + 1/2). (1.6.6)

To finish the proof of the continuity let ε > 0 be arbitrary and set

δ(ε) = min

{
ε

2ea
,
1

2

}

.

Clearly δ(ε) > 0.
Next we will prove the implication

|x− a| < min

{
ε

2ea
,
1

2

}

⇒ |ex − ea| < ε.

Assume |x− a| < min
{

ε
2ea ,

1
2

}

. Then |x− a| < ε
2ea and |x− a| < 1

2 . Since |x− a| < 1
2 , we

have x ∈ (a− 1/2, a + 1/2) and therefore, by (1.6.6), we have

|ex − ea| ≤ 2ea|x− a|.
Since |x− a| < ε

2ea we have
2ea|x− a| < ε.
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The last two displayed inequalities yield

|ex − ea| < ε.

This completes the proof of the continuity of of the exponential function exp. !

6.2. General theorems about continuous functions. The following theorem fol-
lows from Theorem 1.5.7.

Theorem 1.6.14 (Algebra of Continuous Functions). Let f and g be functions and let
a be a real number. Assume that f and g are continuous at the point a.

(a) If h = f + g, then h is continuous at a.
(b) If h = fg, then h is continuous at a.

(c) If h =
f

g
and g(a) ,= 0, then h is continuous at a.

Example 1.6.15. Let f(x) = tanx for all −π

2
< x <

π

2
. Prove that f is continuous at

an arbitrary real number a such that −π

2
< a <

π

2
.

Solution. Use the algebra of continuous functions. !

The following theorem states that a composition of continuous functions is continuous.

Theorem 1.6.16. Let f and g be functions and let a be a real number. Assume that g
is continuous at a and that f is continuous at g(a). If h = f ◦ g, then h is continuous at
a.

Proof. Assume that the function g is continuous at a. That is assume

(I-g) There exists a δ0,g > 0 such that g(x) is defined for all x ∈ (a− δ0,g, a+ δ0,g).
(II-g) For every ε > 0 there exists δg(ε) such that 0 < δg(ε) ≤ δ0,g and such that

|x− a| < δg(ε) ⇒ |g(x) − g(a)| < ε.

Also assume that the function f is continuous at g(a). That is assume

(I-f) There exists a δ0,f > 0 such that f(x) is defined for all x ∈
(

g(a)− δ0,f , g(a)+ δ0,f
)

.
(II-f) For every ε > 0 there exists δg(ε) such that 0 < δf (ε) ≤ δ0,f and such that

|u− g(a)| < δf (ε) ⇒ |f(u)− f(g(a))| < ε.

Let h = f ◦ g, that is h(x) = f(g(x)). I have to prove that h has the following properties:
(These items are red.)

(I-h) There exists a δ0,h > 0 such that h(x) is defined for all x ∈
(

a− δ0,h, a+ δ0,h
)

.
(II-h) For every ε > 0 there exists δh(ε) such that 0 < δh(ε) ≤ δ0,h and such that

|x− a| < δh(ε) ⇒ |h(x)− h(a)| < ε.

Where is h guaranteed to be defined? I must make sure that x is such that |g(x)− g(a)| <
δ0,f . We can achieve this by using (II-g)!

Put δ0,h = δg
(

δ0,f
)

. Now assume that |x − a| < δ0,h. By (II-g) it follows that |g(x) −
g(a)| < δ0,f . Therefore g(x) ∈

(

g(a)− δ0,f , g(a) + δ0,f
)

. Hence, by (I-f), f(g(x)) is defined.
Thus we proved that f(g(x)) is defined whenever |x− a| < δ0,h.

Let ε > 0 be given. Put

δh(ε) = min
{

δg
(

δf (ε)
)

, δg
(

δ0,f
)}

.
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Now we prove the red implication in (II-h).
Assume |x − a| < δh(ε). Then |x − a| < δg

(

δf (ε)
)

. By the green implication in (II-g),
we conclude that

|x− a| < δg
(

δf (ε)
)

⇒ |g(x)− g(a)| < δf (ε).

Using the green implication in (II-f), we conclude that

|g(x) − g(a)| < δf (ε) ⇒ |f(g(x)) − f(g(a))| < ε.

Thus we proved that the assumption |x− a| < δh(ε) implies that

|h(x)− h(a)| = |f(g(x))− f(g(a))| < ε.

This completes the proof. !



CHAPTER 2

Infinite Series

1. Sequences of real numbers

1.1. Definitions and examples.

Definition 2.1.1. A sequence of real numbers is a real function whose domain is the
set N of positive integers.

Let s : N → R be a sequence. Then the values of s are s(1), s(2), s(3), . . . , s(n), . . . . It is
customary to write sn instead of s(n) in this case. Sometimes a sequence will be specified
by listing its first few terms

s1, s2, s3, s4, . . . ,

and sometimes by listing of all its terms {sn}n∈N or {sn}+∞
n=1. One way of specifying a

sequence is to give a formula, or recursion formula for its n−th term sn. Notice that in this
notation s is the “name” of the sequence and n is the variable.

Some examples of sequences follow.

Example 2.1.2. (a) 1, 0, −1, 0, 1, 0, −1, . . . ;
(b) 1, 2, 2, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 7, 7, . . . ;
(c) 1, 1, 1, 1, 1, . . . ; (the constant sequence)

(d)
1

2
,
1

3
,
2

3
,
1

4
,
2

4
,
3

4
,
1

5
,
2

5
,
3

5
,
4

5
,
1

6
,
2

6
,
3

6
,
4

6
,
5

6
,
1

7
,
2

7
,
3

7
,
4

7
,
5

7
, . . . ; (What is

the range of this sequence?)

Recursively defined sequences

Example 2.1.3. (a) x1 = 1, xn+1 = 1 +
xn
4
, n = 1, 2, 3, . . . ;

(b) x1 = 2, xn+1 =
xn
2

+
1

xn
, n = 1, 2, 3, . . . ;

(c) a1 =
√
2, an+1 =

√
2 + an, n = 1, 2, 3, . . . ;

(d) s1 = 1, sn+1 =
√
1 + sn, n = 1, 2, 3, . . . ;

(e) x1 =
9

10
, xn+1 =

9 + xn
10

, n = 1, 2, 3, . . . .

(f) b1 =
1

2
, bn+1 =

1

2
√

1− b2n
, n = 1, 2, 3, . . .

(g) f1 = 1, fn+1 = (n+ 1) fn, n = 1, 2, 3, . . . .

Some important examples of sequences are listed below.

bn = c, c ∈ R. n ∈ N, (2.1.1)

pn = an, a ∈ R, n ∈ N, (2.1.2)
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xn =

(

1 +
1

n

)n

, n ∈ N, (2.1.3)

yn =

(

1 +
1

n

)(n+1)

, n ∈ N, (2.1.4)

zn =
(

1 +
a

n

)n
, a ∈ R, n ∈ N, (2.1.5)

f1 = 1, fn+1 = fn · (n+ 1), n ∈ N. (2.1.6)

(The standard notation for the terms of the sequence f : N → R is fn = n!, n ∈ N)

qn =
an

n!
, a ∈ R, n ∈ N, (2.1.7)

t1 = 2, tn+1 = tn +
1

(n + 1)!
, n ∈ N, (2.1.8)

v1 = 1 + a, vn+1 = vn +
an

(n+ 1)!
, a ∈ R, n ∈ N. (2.1.9)

Let a : N → R be an arbitrary sequence. An important sequence associated with a : N → R

is the following sequence

S1 = a1, Sn+1 = Sn + an+1, n ∈ N. (2.1.10)

1.2. Convergent sequences.

Definition 2.1.4. A sequence s : N → R of real numbers converges to the real number
L if for every ε > 0 there exists a number N(ε) such that

n ∈ N and n > N(ε) ⇒ |sn − L| < ε.

If s : N → R converges to L we will write

lim
n→+∞

sn = L or sn → L (n → +∞).

The number L is called the limit of the sequence s : N → R.

Definition 2.1.5. A sequence s : N → R converges if there exists L ∈ R such that
lim

n→+∞
sn = L. In other words, a sequence s : N → R converges if

∃L ∈ R s.t. ∀ ε > 0 ∃N(ε) ∈ R s.t. n ∈ N and n > N(ε) ⇒ |sn − L| < ε.

A sequence that does not converge is said to diverge.

Example 2.1.6. Let r be a real number such that |r| < 1. Prove that limn→+∞ rn = 0.

Solution. First note that if r = 0, then rn = 0 for all n ∈ N, so the given sequence is
a constant sequence. Therefore it converges. Let ε > 0. We need to solve |rn − 0| < ε for
n. First simplify |rn − 0| = |rn| = |r|n. Now solve |r|n < ε by taking ln of both sides of the
inequality (note that ln is an increasing function)

ln |r|n = n ln |r| < ln ε.

Since |r| < 1, we conclude that ln |r| < 0. Therefore the solution is n >
ln ε

ln |r| . Thus, with

N(ε) =
ln ε

ln |r| , the implication

n ∈ N, n > N(ε) ⇒ |rn − 0| < ε
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is valid. !

Example 2.1.7. Prove that lim
n→+∞

n2 − n− 1

2n2 − 1
=

1

2
.

Solution. Let ε > 0 be given. We need to solve

∣
∣
∣
∣

n2 − n− 1

2n2 − 1
− 1

2

∣
∣
∣
∣
< ε for n. First

simplify:
∣
∣
∣
∣

n2 − n− 1

2n2 − 1
− 1

2

∣
∣
∣
∣
=

∣
∣
∣
∣

2

2

n2 − n− 1

2n2 − 1
− 1

2

2n2 − 1

2n2 − 1

∣
∣
∣
∣
=

∣
∣
∣
∣

−2n− 1

2 (2n2 − 1)

∣
∣
∣
∣
=

2n+ 1

4n2 − 2

Now invent the BIN:
2n+ 1

4n2 − 2
≤ 2n+ n

4n2 − 2n2
=

3n

2n2
=

3

2n
.

Therefore the BIN is:
∣
∣
∣
∣

n2 − n− 1

2n2 − 1
− 1

2

∣
∣
∣
∣
≤ 3

2n
valid for n ∈ N.

Solving for n is now easy:

3

2n
< ε. The solution is n >

3

2ε
.

Thus, with N(ε) =
3

2ε
, the implication

n > N(ε) ⇒
∣
∣
∣
∣

n2 − n− 1

2n2 − 1
− 1

2

∣
∣
∣
∣
< ε

is valid. Using the BIN, this implication should be easy to prove. !

This procedure is very similar to the procedure for proving limits as x approaches
infinity. In fact the following two theorems are true.

Theorem 2.1.8. Let x /→ f(x) be a function which is defined for every x ≥ 1. Define
the sequence a : N → R by

an = f(n) for every n ∈ N.

If lim
x→+∞

f(x) = L, then lim
n→+∞

an = L.

Theorem 2.1.9. Let x /→ f(x) be a function which is defined for every x ∈ (0, 1]. Define
the sequence a : N → R by

an = f(1/n) for every n ∈ N.

If lim
x↓0

f(x) = L, then lim
n→+∞

an = L.

The above two theorems are useful for proving limits of sequences which are defined by
a formula. For example you can prove the following limits by using these two theorems and
what we proved in previous sections.

Exercise 2.1.10. Find the following limits. Provide proofs.

(a) lim
n→+∞

sin

(
1

n

)

(b) lim
n→+∞

n sin

(
1

n

)

(c) lim
n→+∞

ln

(

1 +
1

n

)

(d) lim
n→+∞

n ln

(

1 +
1

n

)

(e) lim
n→+∞

cos

(
1

n

)

(f) lim
n→+∞

1

n
cos

(
1

n

)
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The Algebra of Limits Theorem holds for sequences.

Theorem 2.1.11. Let a : N → R, b : N → R and c : N → R, be given sequences. Let K
and L be real numbers. Assume that

(1) lim
x→+∞

an = K,

(2) lim
x→+∞

bn = L.

Then the following statements hold.

(A) If cn = an + bn, n ∈ N, then lim
x→+∞

cn = K + L.

(B) If cn = anbn, n ∈ N, then lim
x→+∞

cn = KL.

(C) If L ,= 0 and cn =
an
bn

, n ∈ N, then lim
x→+∞

cn =
K

L
.

Theorem 2.1.12. Let a : N → R and b : N → R be given sequences. Let K and L be
real numbers. Assume that

(A) lim
x→+∞

an = K.

(B) lim
x→+∞

bn = L.

(C) There exists a positive integer n0 such that

an ≤ bn for all n ≥ n0.

Then K ≤ L.

Proof. Assume (A), (B) and (C). Let ε > 0 be arbitrary. Since lim
x→+∞

an = K, there

exists Na(ε) such that

n ∈ N and n > Na(ε) ⇒
∣
∣an −K

∣
∣ < ε.

Since lim
x→+∞

bn = L, there exists Nb(ε) such that

n ∈ N and n > Nb(ε) ⇒
∣
∣bn − L

∣
∣ < ε.

Choose m ∈ N such that m > max
{

n0, Na(ε), Nb(ε)
}

. Then

K − ε < am < K + ε

am ≤ bm
L− ε < bm < L+ ε.

Consequently,

K − ε < am ≤ bm < L+ ε,

and hence

K − L < 2ε.

Now recall that ε > 0 was arbitrary. Since the inequality K −L < 2ε holds for all ε > 0 we
conclude that K − L ≤ 0. !

Theorem 2.1.13. Let a : N → R, b : N → R and s : N → R be given sequences. Let L
be a real number. Assume the following

(1) The sequence a : N → R converges to L.
(2) The sequence b : N → R converges to L.
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(3) There exists a positive integer n0 such that

an ≤ sn ≤ bn for all n > n0.

Then the sequence s : N → R converges to L.

Prove this theorem.

1.3. The Monotone Convergence Theorem. Many limits of sequences cannot be
found using theorems from the previous section. For example, the recursively defined se-
quences (a), (b), (c), (d) and (e) in Example 2.1.3 converge but it cannot be proved using
the methods that we presented so far.

Definition 2.1.14. (1) A sequence s : N → R is bounded above if there exists a
real number M such that

∀n ∈ N sn ≤ M.

A number M with the above property is called an upper bound of the sequence s.
(2) A sequence s : N → R is bounded below if there exists a real number m such that

∀n ∈ N m ≤ sn.

A number m with the above property is called a lower bound of the sequence s.
(3) A sequence s : N → R is bounded if it is bounded above and bounded below. In

other words, a sequence s : N → R is bounded if there exist real numbers m and
M such that

∀n ∈ N m ≤ sn ≤ M.

Theorem 2.1.15. If a sequence converges, then it is bounded.

Proof. Assume that a sequence a : N → R converges to a real number L. By Definition
2.1.4 this means that for every ε > 0 there exists a number N(ε) such that

n ∈ N, n > N(ε) ⇒ |an − L| < ε.

In particular for ε = 1 > 0 there exists a number N(1) such that

n ∈ N, n > N(1) ⇒ |an − L| < 1.

Let n0 be the largest positive integer which is ≤ N(1). Then n0 + 1, n0 + 2, . . . are all
> N(1). Therefore

|an − L| < 1 for all n > n0.

This means that
L− 1 < an < L+ 1 for all n > n0.

The numbers L− 1 and L+1 are not lower and upper bounds for the sequence since we do
not know how they relate to the first n0 terms of the sequence. Put

m = min{a1, a2, . . . , an0 , L− 1}
M = max{a1, a2, . . . , an0 , L+ 1}.

Clearly

m ≤ an for all n = 1, 2, . . . , n0

m ≤ L− 1 < an for all n > n0.

Thus m is a lower bound for the sequence a : N → R.
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Clearly

an ≤M for all n = 1, 2, . . . , n0

an < L+ 1 ≤M for all n > n0.

Thus M is an upper bound for the sequence a : N → R. !

Is the converse of Theorem 2.1.15 true? The converse is: If a sequence is bounded, then
it converges. Clearly a counterexample to the last implication is the sequence (−1)n, n ∈ N.
This sequence is bounded but it is not convergent.

The next question is whether boundedness and an additional property of a sequence
can guarantee convergence. It turns out that such an property is monotonicity defined in
the following definition.

Definition 2.1.16. A sequence {sn}+∞
n=1 of real numbers is said to be

non-decreasing if sn ≤ sn+1 for all n ∈ N,

strictly increasing if sn < sn+1 for all n ∈ N,

non-increasing if sn ≥ sn+1 for all n ∈ N.

strictly decreasing if sn > sn+1 for all n ∈ N.

A sequence with either of these four properties is said to be monotonic.

The following two theorems give powerful tools for establishing convergence of a se-
quence.

Theorem 2.1.17. If {sn}+∞
n=1 is non-decreasing and bounded above, then {sn}+∞

n=1 con-
verges.

Theorem 2.1.18. If {sn}+∞
n=1 is non-increasing and bounded below, then {sn}+∞

n=1 con-
verges.

To prove these theorems we have to resort to the most important property of the set of
real numbers: the Completeness Axiom.

The Completeness Axiom. If A and B are nonempty subsets of R such that for every
a ∈ A and for every b ∈ B we have a ≤ b, then there exists c ∈ R such that a ≤ c ≤ b for
all a ∈ A and all b ∈ B.

Proof of Theorem 2.1.17. Assume that {sn}+∞
n=1 is a non-decreasing sequence and

that it is bounded above. Since {sn}+∞
n=1 is non-decreasing we know that

s1 ≤ s2 ≤ s3 ≤ · · · ≤ sn−1 ≤ sn ≤ sn+1 ≤ · · · . (2.1.11)

Let A be the range of the sequence {sn}+∞
n=1. That is A =

{

sn : n ∈ N
}

. Clearly A ,= ∅.
Let B be the set of all upper bounds of the sequence {sn}+∞

n=1. Since the sequence {sn}+∞
n=1

is bounded above, the set B is not empty. Let b ∈ B be arbitrary. Then b is an upper
bound for {sn}+∞

n=1. Therefore

sn ≤ b for all n ∈ N.

By the definition of A this means

a ≤ b for all a ∈ A.
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Since b ∈ B was arbitrary we have

a ≤ b for all a ∈ A and for all b ∈ B.

By the Completeness Axiom there exists c ∈ R such that

sn ≤ c ≤ b for all n ∈ N and for all b ∈ B. (2.1.12)

Thus c is an upper bound for {sn}+∞
n=1 and also c ≤ b for all upper bounds b of the sequence

{sn}+∞
n=1. Therefore, for an arbitrary ε > 0 the number c− ε (which is < c) is not an upper

bound of the sequence {sn}+∞
n=1. Consequently, there exists a positive integer N(ε) such that

c− ε < s
N(ε)

. (2.1.13)

Let n ∈ N be any positive integer which is > N(ε). Then the inequalities (2.1.11) imply
that

s
N(ε)

≤ sn. (2.1.14)

By (2.1.12) the number c is an upper bound of {sn}+∞
n=1. Hence we have

sn ≤ c for all n ∈ N. (2.1.15)

Putting together the inequalities (2.1.13), (2.1.14) and (2.1.15) we conclude that

c− ε < sn ≤ c for all n ∈ N such that n > N(ε). (2.1.16)

The relationship (2.1.16) shows that for n ∈ N such that n > N(ε) the distance between
numbers sn and c is < ε. In other words

n ∈ N, n > N(ε) implies |sn − c| < ε.

This is exactly the implication in Definition 2.1.4. Thus, we proved that

lim
n→+∞

sn = c. !

Example 2.1.19. Prove that the sequence in Example 2.1.3 (b) converges. That is,

prove that the recursively defined sequence x1 = 2, xn+1 =
xn
2

+
1

xn
, n ∈ N, converges.

Solution. It is useful to calculate the first few terms of this sequence:

x1 = 2, x2 =
3

2
, x3 =

17

12
, x4 =

577

408
, x5 =

665857

470832
, x6 =

886731088897

627013566048
.

Notice that the formula xn+1 = xn

2 + 1
xn

gives a positive output xn+1 whenever the
input xn is positive. Since x1 > 0 this guaranties that x2 > 0. In turn, the fact that x2 > 0
guaranties that x3 > 0, and so on. This reasoning justifies that xn > 0 for all n ∈ N. This
proves that the sequence {xn} is bounded below by 0.

Next we will prove that
(

xn
)2 ≥ 2 for all n ∈ N. We consider two cases n = 1 and

n > 1. If n = 1, then
(

x1
)2

= 22 = 4 ≥ 2. Now assume that n > 1. Then n − 1 ∈ N and
xn = xn−1

2 + 1
xn−1

. Therefore

(

xn
)2

=
(xn−1

2
+

1

xn−1

)2

=
(xn−1)2

4
+ 1 +

1

(xn−1)2

= 2 +
(xn−1)2

4
− 1 +

1

(xn−1)2
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= 2 +
(xn−1

2
− 1

xn−1

)2

≥ 2.

Thus
(

xn
)2 ≥ 2 for all n ∈ N.

Since xn > 0,
(

xn
)2 ≥ 2 implies xn ≥ 2

xn
. Further, dividing by 2 we get xn

2 ≥ 1
xn

. Adding
xn

2 to the both sides of the last inequality we obtain xn ≥ xn

2 + 1
xn

. Thus xn ≥ xn+1. Here

we have proved that
(

xn
)2 ≥ 2 implies xn ≥ xn+1. Since

(

xn
)2 ≥ 2 is true for all n ∈ N,

we have proved that xn ≥ xn+1 is true for all n ∈ N.
To summarize, we have proved that xn > 0 for all n ∈ N and xn ≥ xn+1 is true for all

n ∈ N. That {xn} is bounded below and non-increasing. By the Monotone Convergence
Theorem this sequence converges. Denote the limit of {xn} by L.

Next we use the algebra of limits to calculate L. Since
(

xn
)2 ≥ 2 for all n ∈ N, by

Theorems 2.1.11 and 2.1.12 we have L2 ≥ 2. Since xn > 0 for all n ∈ N, by Theorem 2.1.12
we have L ≥ 0. Since L2 ≥ 0 and L ≥ 0 we have L > 0. It is not difficult to prove
that limn→∞ xn+1 = L. This fact, Theorem 2.1.11 and the identity xn+1 = xn

2 + 1
xn

imply

L = L
2 + 1

L . Hence L2 = 2. That is L =
√
2.

This example is in fact a proof that there exists a positive real number a such that
a2 = 2. !

Example 2.1.20. Prove that the sequence Tn =
n
∑

k=0

1

n!
, n ∈ N, converges.

Solution. Let n ∈ N. We first prove that

1

2
+

1

4
+

1

8
+ · · · + 1

2n
= 1− 1

2n
. (2.1.17)

Set A = 1
2 +

1
4 + · · ·+ 1

2n . Then
1
2A = 1

4 +
1
8 + · · ·+ 1

2n+1 . Therefore
1
2A = A− 1

2A = 1
2 −

1
2n+1 .

Multiplying by 2 both sides of 1
2A = 1

2 −
1

2n+1 we get A = 1− 1
2n which is (2.1.17).

For n ∈ N we have n! ≥ 2n−1. Therefore for n > 1 we have
1

2!
+

1

3!
+

1

4!
+ · · ·+ 1

n!
≤ 1

2
+

1

4
+

1

8
+ · · ·+ 1

2n−1
= 1− 1

2n−1
.

Consequently, for n > 1,
1

2!
+

1

3!
+

1

4!
+ · · ·+ 1

n!
< 1.

Therefore for all n ∈ N

Tn =
1

0!
+

1

1!
+

1

2!
+

1

3!
+

1

4!
+ · · ·+ 1

n!
< 3.

This proves that the sequence {Tn} is bounded above. Since for every n ∈ N we have

Tn+1 − Tn =
1

(n+ 1)!
> 0, the sequence {Tn} is increasing. By the Monotone Convergence

Theorem {Tn} converges.
The limit of the sequence {Tn} is the famous number e. !

Example 2.1.21. Prove that the sequence

tn = 1 +
1

2
+

1

3
+

1

4
+ · · · + 1

n
− lnn, n ∈ N,

converges.
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Solution. Let n ∈ N. By the definition

lnn =

∫ n

1

1

x
dx.

Since
1

x
≤ 1

k
whenever k ≤ x ≤ k + 1,

for n > 1 we have

lnn =

∫ 2

1

1

x
dx+

∫ 3

2

1

x
dx+ · · ·+

∫ n

n−1

1

x
dx < 1 +

1

2
+

1

3
+

1

4
+ · · · + 1

n− 1
.

Therefore,

tn = 1 +
1

2
+

1

3
+

1

4
+ · · ·+ 1

n− 1
+

1

n
− lnn >

1

n
> 0

for all n ∈ N, n > 1. Since t1 = 1 > 0, this proves that the sequence {tn} is bounded below
by 0.

Next we prove that {tn} is decreasing. For arbitrary n ∈ N we have

tn − tn+1 =
(

ln(n+ 1)− lnn
)

− 1

n+ 1

=

∫ n+1

n

1

x
dx− 1

n+ 1

=

∫ n+1

n

(
1

x
− 1

n+ 1

)

dx

> 0.

Hence tn > tn+1 for all n ∈ N.
Since {tn} is bounded below and decreasing it converges by the Monotone Convergence

Theorem.
The limit of the sequence {tn} is called Euler’s constant. It is denoted by γ. Its

approximate value to 50 decimal places is

γ ≈ 0.57721566490153286060651209008240243104215933593992.

It is not known whether γ is a rational or irrational number. !
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2. Infinite series of real numbers

2.1. Definition and basic examples. The most important application of sequences
is the definition of convergence of an infinite series. From the elementary school you have
been dealing with addition of numbers. As you know the addition gets harder as you add
more and more numbers. For example it would take some time to add

S100 = 1 + 2 + 3 + 4 + 5 + · · ·+ 98 + 99 + 100

It gets much easier if you add two of these sums, and pair the numbers in a special way:

2S100 = 1 + 2 + 3 + 4 + · · ·+ 97 + 98 + 99 + 100

100 + 99 + 98 + 97 + · · ·+ 4 + 3 + 2 + 1

A straightforward observation that each column on the right adds to 101 and that there are
100 such columns yields that

2S100 = 101 · 100, that is S100 =
101 · 100

2
= 5050.

This can be generalized to any positive integer n to get the formula

Sn = 1 + 2 + 3 + 4 + 5 + · · ·+ (n− 1) + n =
(n+ 1)n

2
.

This procedure indicates that it would be impossible to find the sum

1 + 2 + 3 + 4 + 5 + · · ·+ n+ · · ·

where the last set of · · · indicates that we continue to add positive integers.
The situation is quite different if we consider the sequence

1

2
,
1

4
,
1

8
,

1

16
, . . . ,

1

2n
, . . .

and start adding more and more consecutive terms of this sequence:

1

2
= 1− 1

2
=

1

2
1

2
+

1

4
= 1− 1

4
=

3

4
1

2
+

1

4
+

1

8
= 1− 1

8
=

7

8
1

2
+

1

4
+

1

8
+

1

16
= 1− 1

16
=

15

16
1

2
+

1

4
+

1

8
+

1

16
+

1

32
= 1− 1

32
=

31

32
1

2
+

1

4
+

1

8
+

1

16
+

1

32
+

1

64
= 1− 1

64
=

63

64

These sums are nicely illustrated in Fig. ??. The pictures in Fig. ?? strongly indicate
that the sum of infinitely many numbers 1

2 ,
1
4 ,

1
8 , . . . equals 1. That is

1

2
+

1

4
+

1

8
+

1

16
+ · · · +

1

2n
+ · · · = 1
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Why does this make sense? This makes sense since we have seen above that as we add
more and more terms of the sequence

1

2
,
1

4
,
1

8
,

1

16
, . . . ,

1

2n
, . . .

we are getting closer and closer to 1. Indeed,

1

2
+

1

4
+

1

8
+

1

16
+ · · · +

1

2n
= 1− 1

2n

and

lim
n→+∞

(

1− 1

2n

)

= 1.

This reasoning leads to the definition of convergence of an infinite series:

Definition 2.2.1. Let a : N → R be a given sequence. Then the expression

a1 + a2 + a3 + · · · + an + · · ·
is called an infinite series. We often abbreviate it by writing

a1 + a2 + a3 + · · · + an + · · · =
+∞
∑

n=1

an.

For each positive integer n we calculate the (finite) sum of the first n terms of the series

Sn = a1 + a2 + a3 + · · · + an.

We call Sn a partial sum of the infinite series
+∞
∑

n=1

an. (Notice that {Sn}+∞
n=1 is a new

sequence.) If the sequence {Sn}+∞
n=1 converges to a real number S, that is if

lim
n→+∞

Sn = S,

then the infinite series
∑+∞

n=1 an is said to be convergent and we write

a1 + a2 + a3 + · · · + an + · · · = S or
+∞
∑

n=1

an = S.

The number S is called the sum of the series.
If the sequence of the partial sums S : N → R does not converge to a real number, then

the series is called divergent.

In the example above we have

an =
1

2n
=

(
1

2

)n

,

Sn = 1− 1

2n
=

2n − 1

2n

lim
n→+∞

(

1− 1

2n

)

= 1.

Therefore we say that the series

1

2
+

1

4
+

1

8
+

1

16
+ · · · +

1

2n
+ · · · =

+∞
∑

n=1

1

2n
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converges and its sum is 1. We write
+∞
∑

n=1

1

2n
= 1.

In our opening example

an = n,

Sn = 1 + 2 + 3 + · · ·+ n =
(n+ 1)n

2

lim
n→+∞

(n+ 1)n

2
does not exist.

Therefore we say that the series

1 + 2 + 3 + 4 + · · · + n + · · · =
+∞
∑

n=1

n

diverges.

2.2. Geometric Series. Let a and r be real numbers. The most important infinite
series is

a+ a r + a r2 + a r3 + · · ·+ a rn + · · · =
+∞
∑

n=0

a rn (2.2.1)

This series is called a geometric series. To determine whether this series converges or not
we need to study its partial sums:

S0 = a, S1 = a+ a r,

S2 = a+ a r + a r2, S3 = a+ a r + a r2 + a r3,

S4 = a+ a r + a r2 + a r3 + a r4, S5 = a+ a r + a r2 + a r3 + a r4 + a r5,

...

Sn = a+ a r + a r2 + · · ·+ a rn−1 + a rn

...

Notice that we have already studied the special case when a = 1 and r =
1

2
. In this

special case we found a simple formula for Sn and then we evaluated lim
n→+∞

Sn. It turns out

that we can find a simple formula for Sn in the general case as well.
First note that the case a = 0 is not interesting, since then all the terms of the geometric

series are equal to 0 and the series clearly converges and its sum is 0. Assume that a ,= 0.
If r = 1 then Sn = n a. Since we assume that a ,= 0, lim

n→+∞
na does not exist. Thus for

r = 1 the series diverges.
Assume that r ,= 1. To find a simple formula for Sn, multiply the long formula for Sn

above by r to get:

Sn = a+ ar + ar2 + · · ·+ arn−1 + arn,

rSn = ar + ar2 + · · ·+ arn + arn+1;
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now subtract,

Sn − r Sn = a− a rn+1,

and solve for Sn:

Sn = a
1− rn+1

1− r
.

We already proved that if |r| < 1, then lim
n→+∞

rn+1 = 0. If |r| ≥ 1, then lim
n→+∞

rn+1 does

not exist. Therefore we conclude that

lim
n→+∞

Sn = lim
n→+∞

a
1− rn+1

1− r
= a

1

1− r
for |r| < 1,

lim
n→+∞

Sn does not converge to a real number for |r| ≥ 1.

In conclusion

• If |r| < 1, then the geometric series
+∞
∑

n=0

a rn converges and its sum is a
1

1− r
.

• If |r| ≥ 1, then the geometric series
+∞
∑

n=0

a rn diverges.

Fig. 1 illustrates the sum of a geometric series with a > 0 and 0 < r < 1:

a+ ar + ar2 + · · · + arn + · · · = a

1− r
.

a

ar

ar2

ar3

ar4

ar5

ar6

ar7

10
0

a

a-ra

1

1 - r
Fig. 1. The width of the rectangle is 1/(1 − r) and its height is a. The
slope of the diagonal is (1− r)a. The slope of the line above the diagonal is
r(1− r)a

In Fig. 1 the terms of a geometric series are represented as areas. As we can see in Fig. 1
the areas of the terms fill in the rectangle whose area is a/(1− r).
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In Fig. 2 we represent the terms of the geometric series by lengths of horizontal line
segments. The picture strongly indicates that the total length of infinitely many horizontal
line segments is a/(1 − r). The reason for this is that by construction the slope of the
hypothenuse CB of the right triangle ABC in Fig. 2 is (1 − r). Since the length of its
vertical cathetus AC is a, the length of its horizontal cathetus AB must be a/(1 − r).

a

a

a-ar

ar

ar2

ar3

...ar ar2 ar3 ar4 ar5 ar6 B

C

A

Fig. 2. Consider the right triangle ABC. From the small left-topmost right
triangle we calculate that the slope of the hypothenuse CB is 1− r = rise

run =
a−ar
a . Since the length of the vertical cathetus AC is a we deduce that the

length of the horizontal cathetus AB is a/(1 − r).

2.3. How to recognize whether an infinite series is a geometric series? Con-

sider for example the infinite series
+∞
∑

n=1

πn+2

e2n−1
. Here an =

πn+2

e2n−1
.

Looking at the formula (2.2.1) we note that the first term of the series is a and that the
ratio between any two consecutive terms is r.

For an =
πn+2

e2n−1
given above we calculate

an+1

an
=

πn+1+2

e2(n+1)−1

πn+2

e2n−1

=
πn+3 e2n−1

e2n+1 πn+2
=

π

e2
.

Since
an+1

an
is constant, we conclude that the series

+∞
∑

n=1

πn+2

e2n−1
is a geometric series with

a = a1 =
π2

e
and r =

π

e2
for all n = 1, 2, 3, . . . .

Since r =
π

e2
< 1, we conclude that the sum of this series is

+∞
∑

n=1

πn+2

e2n−1
=

π2

e

1

1− π

e2

=
π2

e

e2

e2 − π
=

π2 e

e2 − π
.
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Thus, to verify whether a given infinite series is a geometric series calculate the ratio of
the consecutive terms and see whether it is a constant:

+∞
∑

n=1

an for which
an+1

an
= r for all n = 1, 2, 3, . . . (2.2.2)

is a geometric series. In this case a = a1 (the first term of the series).

2.4. Harmonic Series. Harmonic series is the series

1 +
1

2
+

1

3
+

1

4
+ · · · + 1

n
+ · · · =

+∞
∑

n=1

1

n
.

Again, to explore the convergence of this series we have to study its partial sums:

S1 = 1, S2 = 1 +
1

2
,

S3 = 1 +
1

2
+

1

3
, S4 = 1 +

1

2
+

1

3
+

1

4
,

S5 = 1 +
1

2
+

1

3
+

1

4
+

1

5
, S6 = 1 +

1

2
+

1

3
+

1

4
+

1

5
+

1

6
,

S7 = 1 +
1

2
+

1

3
+

1

4
+

1

5
+

1

6
+

1

7
, S8 = 1 +

1

2
+

1

3
+

1

4
+

1

5
+

1

6
+

1

7
+

1

8
,

...

Sn == 1 +
1

2
+

1

3
+ · · · + 1

n− 1
+

1

n
...

Since Sn+1 − Sn =
1

n+ 1
> 0 the sequence {Sn}+∞

n=1 is increasing.

Next we will prove that the sequence {Sn}+∞
n=1 is not bounded. We will consider only

the positive integers which are powers of 2: 2, 4, 8, . . . , 2k, . . . . The following inequalities
hold:

S2 = 1 +
1

2
≥ 1 +

1

2
=1 + 1

1

2

S4 = 1 +
1

2
+

1

3
+

1

4
≥ 1 +

1

2
+

1

4
+

1

4
= 1 +

1

2
+ 2

1

4
=1 + 2

1

2

S8 = 1 +
1

2
+

1

3
+

1

4
+

1

5
+

1

6
+

1

7
+

1

8

≥ 1 +
1

2
+

1

4
+

1

4
+

1

8
+

1

8
+

1

8
+

1

8
= 1 +

1

2
+ 2

1

4
+ 4

1

8
=1 + 3

1

2

S16 = 1 +
1

2
+

1

3
+

1

4
+

1

5
+

1

6
+

1

7
+

1

8
+

1

9
+

1

10
+

1

11
+

1

12
+

1

13
+

1

14
+

1

15
+

1

16

≥ 1 +
1

2
+

1

4
+

1

4
+

1

8
+

1

8
+

1

8
+

1

8
= 1 +

1

2
+ 2

1

4
+ 4

1

8
+ 8

1

16
=1 + 4

1

2
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Continuing this reasoning we conclude that for every k = 1, 2, 3, . . . the following formula
holds:

S2k = 1 +
1

2
+

1

3
+

1

4
+

1

5
+ · · ·+ 1

8
+ · · · + 1

2k−1
+

1

2k−1 + 1
+ · · ·+ 1

2k

≥ 1 +
1

2
+ 2

1

4
+ 4

1

8
+ 8

1

16
+ · · ·+ 2k−1 1

2k
=1 + k

1

2
Thus

S2k ≥ 1 + k
1

2
for all k = 1, 2, 3, . . . (2.2.3)

This formula implies that the sequence {Sn}+∞
n=1 is not bounded. Namely, let M be an

arbitrary real number. We put j = max
{

2 floor(M), 1
}

. Then

j ≥ 2 floor(M) > 2(M − 1).

Therefore,

1 + j
1

2
> M.

Together with the inequality (2.2.3) this implies that

S2j > M.

Thus for an arbitrary real number M there exists a positive integer n = 2j such that
Sn > M . This proves that the sequence {Sn}+∞

n=1 is not bounded and therefore it is not
convergent.

In conclusion:

• The harmonic series diverges.

2.5. Telescoping series. The next example is an example of a series for which we can
find a simple formula for the sequence of its partial sums and easily explore the convergence
of that sequence. Examples of this kind are called telescoping series.

Example 2.2.2. Prove that the series
+∞
∑

n=1

1

n(n+ 1)
converges and find its sum.

Solution. We need to examine the series of partial sums of this series:

Sn =
1

1 · 2 +
1

2 · 3 +
1

3 · 4 + · · · + 1

n(n+ 1)
, n = 1, 2, 3, . . . .

It turns out that it is easy to find the sum Sn if we use the partial fraction decomposition
for each of the terms of the series:

1

k(k + 1)
=

1

k
− 1

k + 1
for all k = 1, 2, 3, . . . .

Now we calculate:

Sn =
1

1 · 2 +
1

2 · 3 +
1

3 · 4 + · · ·+ 1

n (n+ 1)

=

(
1

1
− 1

2

)

+

(
1

2
− 1

3

)

+

(
1

3
− 1

4

)

+ · · ·+
(

1

n− 1
− 1

n

)

+

(
1

n
− 1

n+ 1

)

= 1 − 1

n+ 1
.
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Thus Sn = 1 − 1

n+ 1
for all n = 1, 2, 3, . . .. Using the algebra of limits we conclude that

lim
n→+∞

Sn = lim
n→+∞

(

1 − 1

n+ 1

)

= 1 .

Therefore the series
+∞
∑

n=1

1

n (n+ 1)
converges and its sum is 1:

+∞
∑

n=1

1

n (n+ 1)
= 1 .

!

Exercise 2.2.3. Determine whether the series is convergent or divergent. If it is con-
vergent, find its sum.

(a)
+∞
∑

n=1

6

(
2

3

)n−1

(b)
+∞
∑

n=1

(−2)n+3

5n−1
(c)

+∞
∑

n=0

(
√
2)n

2n+1
(d)

+∞
∑

n=1

en+3

πn−1

(e)
+∞
∑

n=1

22n−1

πn
(f)

+∞
∑

n=1

5

2n
(g)

+∞
∑

n=0

(sin 1)n (h)
+∞
∑

n=0

2

n2 + 4n+ 3

(i)
+∞
∑

n=0

(cos 1)n (j)
+∞
∑

n=2

2

n2 − 1
(k)

+∞
∑

n=0

(tan 1)n (l)
+∞
∑

n=1

ln

(

1 +
1

n

)

A digit is a number from the set {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}. A decimal number with digits
d1, d2, d3, . . . , dn, . . . is in fact an infinite series:

0.d1d2d3 . . . dn . . . =
+∞
∑

n=1

dn
10n

.

Therefore each decimal number with digits that repeat leads to a geometric series. We use
the following abbreviation:

0.d1d2d3 . . . dk = 0.d1d2d3 . . . dkd1d2d3 . . . dkd1d2d3 . . . dkd1d2d3 . . . dk . . .

Exercise 2.2.4. Express the following real nubers as a ratios of positive integers.
(a) 0.9 = 0.999 . . . (b) 0.7 = 0.777 . . . (c) 0.712 (d) 0.5432

2.6. Basic properties of infinite series. An immediate consequence of the definition
of a convergent series is the following theorem

Theorem 2.2.5. If a series

+∞
∑

n=1

an converges, then lim
n→+∞

an = 0.

Proof. Assume that
+∞
∑

n=1

an is a convergent series. By the definition of convergence of

a series its sequence of partial sums {Sn}+∞
n=1 converges to some number S: lim

n→+∞
Sn = S.

Then also lim
n→+∞

Sn−1 = S. Now using the formula

an = Sn − Sn−1, for all n = 2, 3, 4, . . . ,
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and the algebra of limits we conclude that

lim
n→+∞

an = lim
n→+∞

Sn − lim
n→+∞

Sn−1 = S − S = 0.

!

Warning: The preceding theorem cannot be used to conclude that a particular series

converges. Notice that in this theorem it is assumed that
+∞
∑

n=1

an is a convergent.

On a positive note: Theorem 2.2.5 can be used to conclude that a given series diverges:

If we know that lim
n→+∞

an = 0 is not true, then we can conclude that the series
+∞
∑

n=1

an

diverges. This is a useful test for divergence.

Theorem 2.2.6 (The Test for Divergence). If the sequence {an}+∞
n=1 does not converge

to 0, then the series

+∞
∑

n=1

an diverges.

Example 2.2.7. Determine whether the infinite series
+∞
∑

n=1

cos

(
1

n

)

converges or di-

verges.

Solution. Just perform the divergence test:

lim
n→+∞

cos

(
1

n

)

= 1 ,= 0 .

Therefore the series
+∞
∑

n=1

cos

(
1

n

)

diverges. !

Example 2.2.8. Determine whether the infinite series
+∞
∑

n=1

n(−1)n

n+ 1
converges or diverges.

Solution. Consider the sequence

{

n(−1)n

n+ 1

}+∞

n=1

:

1

1 · 2 ,
2

3
,

1

3 · 4 ,
4

5
,

1

5 · 6 ,
6

7
,

1

7 · 8 ,
8

9
,

1

9 · 10 ,
10

11
,

1

11 · 12 ,
12

13
, . . . ,

1

(2k − 1) · 2k ,
2k

2k + 1
, . . .

(2.2.4)
Without giving a formal proof we can tell that this sequence diverges. In my informal
language the sequence (2.2.4) is not constantish since it can not decide whether to be close
to 0 or 1.

Therefore the series
+∞
∑

n=1

n(−1)n

n+ 1
diverges. !

Remark 2.2.9. The divergence test can not be used to answer whether the series
+∞
∑

n=1

sin

(
1

n

)

converges or diverges. It is clear that lim
n→+∞

sin

(
1

n

)

= 0. Thus we can

not use the test for divergence.
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Theorem 2.2.10 (The Algebra of Convergent Infinite Series). Assume that

+∞
∑

n=1

an and

+∞
∑

n=1

bn are convergent series. Let c be a real number. Then the series

+∞
∑

n=1

c an,
+∞
∑

n=1

(

an + bn
)

, and

+∞
∑

n=1

(

an − bn
)

,

are convergent series and the following formulas hold

+∞
∑

n=1

c an = c
+∞
∑

n=1

an,

+∞
∑

n=1

(

an + bn
)

=
+∞
∑

n=1

an +
+∞
∑

n=1

bn, and

+∞
∑

n=1

(

an − bn
)

=
+∞
∑

n=1

an −
+∞
∑

n=1

bn .

Remark 2.2.11. The fact that we write
+∞
∑

n=1

bn does not necessarily mean that
+∞
∑

n=1

bn is

a genuine infinite series.
For example, let m be a positive integer and assume that bn = 0 for all n > m. Then

+∞
∑

n=1

bn =
m
∑

n=1

bn. In this case the series
+∞
∑

n=1

bn is clearly convergent. If
+∞
∑

n=1

an is a convergent

(genuine) infinite series, then Theorem 2.2.10 implies that the infinite series
+∞
∑

n=1

(

an + bn
)

is convergent and
+∞
∑

n=1

(

an + bn
)

=
+∞
∑

n=1

an +
m
∑

n=1

bn .

This in particular means that the nature of convergence of an infinite series can not be
changed by changing finitely many terms of the series.

For example, let m be a positive integer. Then:

The series
+∞
∑

n=1

an converges if and only if the series
+∞
∑

k=1

am+k converges.

Moreover, if
+∞∑

n=1
an converges, then the following formula holds

+∞
∑

n=1

an =
m
∑

j=1

aj +
+∞
∑

k=1

am+k .

Example 2.2.12. Prove that the series
+∞
∑

n=1

(
π

n(n+ 1)
− 1

2n

)

converges and find its

sum.
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Exercise 2.2.13. Determine whether the series is convergent or divergent. If a series
is convergent find its sum.

(a)
+∞
∑

n=1

n

n+ 1
(b)

+∞
∑

n=1

arctann (c)
+∞
∑

n=0

3n + 2n

5n+1
(d)

+∞
∑

n=2

(
3

n2 − 1
+

π

en

)

(e)
+∞
∑

n=0

en + πn

22n−1
(f)

+∞
∑

n=1

n sin

(
1

n

)

(g)
+∞
∑

n=0

(n+ 1)2

n2 + 1
(h)

+∞
∑

n=0

((0.9)n + (0.1)n)

Exercise 2.2.14. Express the following sums as ratios of positive integers and as re-
peating decimal numbers.

(a) 0.47 + 0.5 (b) 0.499 + 0.47 (c) 0.499 + 0.503
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3. Convergence Tests

3.1. Comparison Theorems. Warning: All series in the next two subsections
have positive terms! Do not use the tests from these sections for series with
some negative terms.

The convergence of the geometric series in Subsection 2.2 and the telescopic series in
Subsection 2.5 was established by calculating the limits of their partial sums. This is not
possible for most series. For example we will soon prove that the series

+∞
∑

n=1

1

n2

converges. To understand why the sum of this series is exactly
π2

6
you need to take a class

about Fourier series, Math 430.
I hope that you have done your homework and that you proved that the series

+∞
∑

n=2

1

n2 − 1

converges and that you found its sum. If you didn’t here is a way to do it: (It turns out
that this is a telescoping series.)

Let

Sn =
1

3
+

1

8
+

1

15
+ · · ·+ 1

n2 − 1
.

Since Sn+1 − Sn =
1

(n+ 1)2 − 1
> 0 the sequence {Sn}+∞

n=2 is increasing.

For every k = 2, 3, 4, . . . we have the following partial fractions decomposition

1

k2 − 1
=

1

(k − 1)(k + 1)
=

1

2

(
1

k − 1
− 1

k + 1

)

.

Next we use this formula to simplify the formula for the n-th partial sum

Sn =
n
∑

k=2

1

k2 − 1
=

n
∑

k=2

1

2

(
1

k − 1
− 1

k + 1

)

=
1

2

n
∑

k=2

(
1

k − 1
− 1

k + 1

)

=
1

2

((
1

1
− 1

3

)

+

(
1

2
− 1

4

)

+

(
1

3
− 1

5

)

+ · · ·+
(

1

n− 2
− 1

n

)

+

(
1

n− 1
− 1

n+ 1

))

=
1

2

(
1

1
+

1

2
− 1

n
− 1

n+ 1

)

=
1

2

(
3

2
− 2n + 1

n(n+ 1)

)

=
3

4
− 2n+ 1

2n(n + 1)
.

Using the algebra of limits we calculate

lim
n→+∞

2n+ 1

2n(n+ 1)
= lim

n→+∞

2n+ 1

n2

2n(n+ 1)

n2

= lim
n→+∞

2

n
+

1

n2

2
n+ 1

n

=
0 + 0

2 · 1
= 0 .
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Therefore, using the algebra of limits again, we calculate

lim
n→+∞

Sn =
3

4
− 0 =

3

4
.

Clearly Sn <
3

4
for all n = 2, 3, . . ..

Now consider the series
+∞
∑

n=1

1

n2
= 1 +

1

4
+

1

9
+

1

16
+ · · ·+ 1

n2
+ · · ·

Let

Tn = 1 +
1

4
+

1

9
+

1

16
+ · · ·+ 1

n2
.

The fact that Tn+1 − Tn =
1

(n+ 1)2
> 0 implies that the sequence {Tn}+∞

n=1 is increasing.

Since
1

4
<

1

3
,

1

9
<

1

8
,

1

16
<

1

15
, . . . ,

1

n2
<

1

n2 − 1
,

we conclude that

Tn = 1 +
1

4
+

1

9
+

1

16
+ · · ·+ 1

n2
< 1 +

1

3
+

1

8
+

1

15
+ · · ·+ 1

n2 − 1
= 1 + Sn < 1 +

3

4
.

Thus Tn <
7

4
for all n = 2, 3, 4, . . .. Since the sequence {Tn}+∞

n=1 is increasing and bounded

above it converges by Theorem 2.1.17. Thus the series
+∞
∑

n=1

1

n2
converges and its sum is

<
7

4
.

The principle demonstrated in the above example is the core of the following comparison
theorem.

Theorem 2.3.1 (The Comparison Test). Let

+∞
∑

n=1

an and

+∞
∑

n=1

bn be infinite series with

positive terms. Assume that

an ≤ bn for all n = 1, 2, 3, . . . .

(a) If

+∞
∑

n=1

bn converges, then

+∞
∑

n=1

an converges and

+∞
∑

n=1

an ≤
+∞
∑

n=1

bn.

(b) If

+∞
∑

n=1

an diverges, then

+∞
∑

n=1

bn diverges.

Sometimes the following comparison theorem is easier to use.

Theorem 2.3.2 (The Limit Comparison Test). Let

+∞
∑

n=1

an and

+∞
∑

n=1

bn be infinite series

with positive terms. Assume that

lim
n→+∞

an
bn

= L.
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If

+∞
∑

n=1

bn converges, then

+∞
∑

n=1

an converges. Or, equivalently, if

+∞
∑

n=1

an diverges, then

+∞
∑

n=1

bn

diverges.

Example 2.3.3. Determine whether the series
+∞
∑

n=1

n+ 1√
1 + n6

converges or diverges.

Solution. The dominant term in the numerator is n and the dominant term in the
denominator is

√
n6 = n3. This suggests that this series behaves as the convergent series

+∞
∑

n=1

1

n2
. Since we are trying to prove convergence we will take

an =
n+ 1√
1 + n6

and bn =
1

n2

in the Limit Comparison Test. Now calculate:

lim
n→+∞

n+ 1√
1 + n6

1

n2

= lim
n→+∞

n2(n+ 1)√
1 + n6

= lim
n→+∞

n2(n + 1)

n3√
1 + n6

n3

= lim
n→+∞

1 +
1

n
√

1

n6
+ 1

= 1 .

In the last step we used the algebra of limits and the fact that

lim
n→+∞

√

1

n6
+ 1 = 1

which needs a proof by definition.

Since we proved that lim
n→+∞

n+ 1√
1 + n6

1

n2

= 1 and since we know that
+∞
∑

n=1

1

n2
is convergent,

the Limit Comparison Test implies that the series
+∞
∑

n=1

n+ 1√
1 + n6

converges. !

In the next theorem we compare an infinite series with an improper integral of a positive
function. Here it is presumed that we know how to determine the convergence or divergence
of the improper integral involved.

Theorem 2.3.4 (The Integral Test). Suppose that x /→ f(x) is a continuous positive,
decreasing function defined on the interval (0,+∞). Assume that an = f(n) for all n =
1, 2, . . .. Then the following statements are equivalent

(a) The integral

∫ +∞

1
f(x) dx converges.

(b) The series

+∞
∑

n=1

an converges.

At this point we assume that you are familiar with improper integrals and that you
know how to decide whether an improper integral converges or diverges.

We will use this test in two different forms:
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• Prove that the integral

∫ +∞

1
f(x) dx converges. Conclude that the series

+∞
∑

n=1

an

converges.

• Prove that the integral

∫ +∞

1
f(x) dx diverges. Conclude that the series

+∞
∑

n=1

an

diverges.

Example 2.3.5 (Convergence of p-series). Let p be a real number. The p-series
+∞
∑

n=1

1

np

is convergent if p > 1 and divergent if p ≤ 1.

Solution. Let n > 1. Then the function x /→ nx is an increasing function. Therefore,
if p < 1, then np < n. Consequently,

1

np
>

1

n
, for all n > 1 and p < 1 .

Since the series
+∞
∑

n=1

1

n
diverges, the Comparison Test implies that the series

+∞
∑

n=1

1

np
diverges

for all p ≤ 1.

Now assume that p > 1. Consider the function f(x) =
1

xp
, x > 0. This function is a

continuous, decreasing, positive function. Let me calculate the improper integral involved
in the Integral Test for convergence:

∫ +∞

1

1

xp
dx = lim

t→+∞

∫ t

1

1

xp
dx = lim

t→+∞

1

1− p

1

xp−1

∣
∣
∣
∣
∣

t

1

=
1

1− p
lim

t→+∞

(

1

tp−1
− 1

)

=
1

1− p
(−1) =

1

p− 1

Thus this improper integral converges. Notice that the condition p > 1 was essential to

conclude that lim
t→+∞

1

tp−1
= 0. Since

1

np
= f(n) for all n = 1, 2, 3, . . ., the Integral Test

implies that the series
+∞
∑

n=1

1

np
converges for p > 1. !

Remark 2.3.6. We have not proved this for all p > 1 the function f(x) =
1

xp
, x > 0,

is continuous. One way to prove that for an arbitrary a ∈ R the function x /→ xa, x > 0 is
continuous is to use the identity

xa = ea lnx, x > 0.

This identity shows that the function x /→ xa, x > 0 is a composition of the function
exp(x) = ex, x ∈ R and the function x /→ a lnx, x > 0. The later function is continuous
by the algebra of continuous functions: It is a product of a constant a and a continuous
function ln. We proved that exp is continuous. By Theorem 1.6.16 a composition of
continuous function is continuous. Consequently x /→ xa, x > 0 is continuous.

Exercise 2.3.7. Determine whether the series is convergent or divergent.
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(a)
+∞
∑

n=1

1

n
√
n

(b)
+∞
∑

n=1

ne−n2
(c)

+∞
∑

n=2

1

n lnn
(d)

+∞
∑

n=1

lnn

n
√
n

(e)
+∞
∑

n=2

1

n(lnn)b
(f)

+∞
∑

n=1

1

n!
(g)

+∞
∑

n=1

sin
( 1

n

)

(h)
+∞
∑

n=2

1

n
sin
( 1

n

)

(i)
+∞
∑

n=1

1

n
cos
( 1

n

)

(j)
+∞
∑

n=0

π + en

e+ πn
(k)

+∞
∑

n=1

n!

nn
(l)

+∞
∑

n=0

n2 + 1√
n7 + n3 + 1

For the series in (e) find all numbers b for which the series converges.

Exercise 2.3.8. A digit is a number from the set {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}. A decimal
number with digits d1, d2, d3, . . . , dn, . . . is in fact an infinite series:

0.d1d2d3 . . . dn . . . =
+∞
∑

n=1

dn
10n

.

Use a theorem from this section to prove that the series above always converges.

3.2. Ratio and root tests. Warning: All series in this section have positive
terms! Do not use the tests from this section for series with negative terms.

In Subsection 2.3 we pointed out (see (2.2.2)) that a series

+∞
∑

n=1

an for which
an+1

an
= r for all n = 1, 2, 3, . . .

is a geometric series. Consequently, if |r| < 1 this series is convergent, and it is divergent
if |r| ≥ 1.

Testing the series
+∞
∑

n=0

1

3n − 2n+1
using this criteria leads to the ratio

1

3n+1 − 2n+2

1

3n − 2n+1

=
3n − 2n+1

3n+1 − 2n+2
=

3n
(

1− 2

(
2

3

)n)

3n+1

(

1− 2

(
2

3

)n) =
1

3

1− 2

(
2

3

)n

1− 2

(
2

3

)n+1

which certainly is not constant, but it is “constantish.” I propose that series for which the
ratio an+1/an is not constant but constantish, should be called “geometrish.” The following
theorem tells that convergence and divergence of these series is determined similarly to
geometric series.

Theorem 2.3.9 (The Ratio Test). Assume that

+∞
∑

n=1

an is a series with positive terms

and that

lim
n→+∞

an+1

an
= R .

Then

(a) If R < 1, then the series converges.
(b) If R > 1, then the series diverges.
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Another way to recognize a geometric series is:

A series
+∞
∑

n=1

an for which n

√
an+1

a1
= r for all n = 1, 2, 3, . . .

is a geometric series. Consequently, if |r| < 1 this series is convergent, and it is divergent
if |r| ≥ 1.

Testing the series
+∞
∑

n=0

(
1 + n

1 + 2n

)n

using this criteria leads to the root

n

√
(

1 + n

1 + 2n

)n

=
1 + n

1 + 2n
=

1
n + 1
1
n + 2

which certainly is not constant, but it is “constantish.”

Theorem 2.3.10 (The Root Test). Assume that

+∞
∑

n=1

an is a series with positive terms

and that
lim

n→+∞
n
√
an = R .

Then

(a) If R < 1, then the series converges.
(b) If R > 1, then the series diverges.

Remark 2.3.11. Notice that in both the ratio test and the root test if the limit R = 1
we can conclude neither divergence nor convergence. In this case the test is inconclusive.

Exercise 2.3.12. Determine whether the series is convergent or divergent.

(a)
+∞
∑

n=2

1

2n − 3
(b)

+∞
∑

n=1

(
n+ 2

2n − 1

)n

(c)
+∞
∑

n=1

4n

32n−1
(d)

+∞
∑

n=1

n!

1 · 3 · 5 · · · (2n − 1)

(e)
+∞
∑

n=1

3nn2

n!
(f)

+∞
∑

n=1

e−nn! (g)
+∞
∑

n=1

e1/n

n2
(h)

+∞
∑

n=1

2 · 4 · 6 · · · (2n)
1 · 3 · 5 · · · (2n − 1)

(i)
+∞
∑

n=1

(n!)2

(2n)!
(j)

+∞
∑

n=1

2n2n

(3n2 + 1)n
(k)

+∞
∑

n=1

23n

32n
(l)

+∞
∑

n=1

1

(arctan n)n

(m)
+∞
∑

n=1

n2

2n
(n)

+∞
∑

n=1

(n+ 1)2

n2n
(o)

+∞
∑

n=1

an

n!
(p)

+∞
∑

n=1

1 · 3 · 5 · · · (2n − 1)

2 · 4 · 6 · · · (2n)
For some of the problems you might need to use tests from previous sections.
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3.3. Alternating infinite series. In the previous two sections we considered only
series with positive terms. In this section we consider series with both positive and negative
terms which alternate: positive, negative, positive, etc. Such series are called alternating
series. For example

1− 1

2
+

1

3
− 1

4
+

1

5
− 1

6
+ · · ·+ (−1)n+1 1

n
+ · · · =

+∞
∑

n=1

(−1)n+1 1

n
(2.3.1)

1− 1 +
1

3
− 1

2
+

1

5
− 1

3
+

1

7
− 1

4
+

1

8
− 1

5
+

1

9
− 1

6
+ · · · =

+∞
∑

n=1

4(−1)n+1

n
(

3 + (−1)n+1
) (2.3.2)

2− 3

2
+

4

3
− 5

4
+

6

5
− 7

6
+ · · · + (−1)n+1n+ 1

n
+ · · · =

+∞
∑

n=1

(−1)n+1n+ 1

n
(2.3.3)

Theorem 2.3.13 (The Alternating Series Test). If the alternating series

a1 − a2 + a3 − a4 + · · ·+ (−1)n+1an + · · · =
+∞
∑

n=1

(−1)n+1an

satisfies the following two conditions:

(i) for all n ∈ N we have an > 0;
(ii) for all n ∈ N we have an+1 ≤ an;
(iii) lim

n→+∞
an = 0;

then the series

+∞
∑

n=1

(−1)n+1an converges.

Proof. Assume that {an}+∞
n=1 satisfies (i), (ii) and (iii).

By the definition of convergence the assumption (iii) implies that for every ε > 0 there
exists Na(ε) such that

∀n ∈ N n > Na(ε) ⇒ |an − 0| < ε.

Since an > 0, the last implication can be simplified as follows

∀n ∈ N n > Na(ε) ⇒ an < ε. (2.3.4)

We need to show that the sequence of partial sums

Sn = a1 − a1 − a2 + a3 − a4 + · · ·+ (−1)n+1an, n ∈ N,

converges.

0 S S1S2 S3S4 S5S6 S7S8

a1
a2
a3
a4
a5
a6
a7
a8

Fig. 3. The partial sums of an alternating series on a number line
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As Figure 3 suggests, each even-indexed partial sum is less than each odd-indexed partial
sum. That is

∀ j ∈ N ∀ k ∈ N S2j < S2k−1 (2.3.5)

Next we will prove this claim. Let k and j be arbitrary positive integers. First assume
k ≤ j. Then 2k − 1 < 2j and

S2j − S2k−1 =
2j
∑

i=2k

(−1)i+1ai =
(

−a2k + a2k+1

)

+ · · · +
(

−a2j−2 + a2j−1
)

− a2j .

In the last sum each of the numbers in parenthesis is nonpositive. Therefore,

S2j − S2k−1 =
2j
∑

i=2k

(−1)i+1ai ≤ −a2j < 0.

Hence S2j < S2k−1 in this case. Now assume that k > j. Then 2k − 1 > 2j and

S2k−1 − S2j =
2k−1
∑

i=2j+1

(−1)i+1ai =
(

a2j+1 − a2j+2
)

+ · · ·+
(

a2k−3 − a2k−2

)

+ a2k−1.

In the last sum each of the numbers in parenthesis is nonnegative. Therefore,

S2k−1 − S2j =
2k−1
∑

i=2j+1

(−1)i+1ai ≥ a2k−1 > 0.

Hence S2j < S2k−1 in this case as well. This completes the proof of (2.3.5).
Define

A =
{

S2j : j ∈ N
}

and B =
{

S2k−1 : k ∈ N
}

.

With this notation (2.3.5) can be restated as

∀ a ∈ A ∀b ∈ B a < b.

Since clearly A ,= ∅ and B ,= ∅ we can apply the Completeness Axiom to the sets A and B.
By the Completeness Axiom there exists c ∈ R such that

∀ a ∈ A ∀ b ∈ B a ≤ c ≤ b.

The last inequality in fact says

∀ j ∈ N ∀ k ∈ N S2j ≤ c ≤ S2k−1. (2.3.6)

Let n ∈ N be arbitrary. If n is even, then (2.3.6) yields

Sn ≤ c ≤ Sn+1 = Sn + an+1.

Therefore c− Sn ≤ an+1. If n is odd, then (2.3.6) yields

Sn − an+1 = Sn+1 ≤ c ≤ Sn.

Therefore, Sn − c ≤ an+1. Thus, for all n ∈ N we have

|Sn − c| ≤ an+1. (2.3.7)

Now, using (2.3.7) and (2.3.4) we can prove limn→+∞ Sn = c. Let ε > 0 be arbitrary.
Set N(ε) = Na(ε). Assume n ∈ N and n > N(ε) = Na(ε). Then also n + 1 ∈ N and
n+1 > Na(ε). By the implication in (2.3.4) we conclude an+1 < ε. This inequlity, together
with (2.3.7), implies |Sn − c| < ε. Thus, we proved that

∀ ε > 0 ∃N(ε) ∈ R ∀n ∈ N n > N(ε) ⇒ |Sn − c| < ε.
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This proves that the sequence {Sn}+∞
n=1 converges and hence the alternating series converges.

!

Example 2.3.14. Prove that the series in (2.3.1) converges. The series in (2.3.1) is
called the alternating harmonic series.

Solution. We verify three conditions of the Alternating Series Test. Here, an = 1/n,
n ∈ N. First, for all n ∈ N we have n > 0 and hence 1/n > 0. Second, since for all n ∈ N

we have n+1 > n, by pizza-party principle 1/(n+1) < 1/n. Third, lim
n→+∞

(1/n) = 0 is easy

to prove. Thus the Alternating Series Test implies that the Alternating Harmonic Series
converges. !

Remark 2.3.15. There is a nice geometric argument that
+∞
∑

k=1

(−1)k+1 1

k
= ln 2.

This argument is based on the fact that the even-indexed partial sums of the Alternating
Harmonic Series are in fact right Riemann sums of the integral

∫ 2
1 (1/x)dx:

S2n=
2n
∑

k=1

(−1)k+1 1

k
=

n
∑

j=1

1

2j−1
−

n
∑

j=1

1

2j
=

n
∑

j=1

1

2j−1
+

n
∑

j=1

1

2j
−2

n
∑

j=1

1

2j
=

2n
∑

k=1

1

k
−

n
∑

j=1

1

j
=

n
∑

k=1

1

n+k
=

n
∑

k=1

1

n
1

1+
k
n

.

And, simlarly, the odd-indexed partial sums of the Alternating Harmonic Series are left
Riemann sums of the integral

∫ 2
1 (1/x)dx:

S2n−1=
2n−1
∑

k=1

(−1)k+1 1
k
=

n
∑

j=1

1
2j−1

−
n−1
∑

j=1

1
2j
=

n
∑

j=1

1
2j−1

+
n−1
∑

j=1

1
2j
−2

n−1
∑

j=1

1
2j
=

2n−1
∑

k=1

1
k
−

n−1
∑

j=1

1
j
=

n−1
∑

k=0

1
n+k

=
n−1
∑

k=0

1
n

1

1+ k

n

.

The details of the argument I will post on the class website.

Remark 2.3.16. The Alternating Series Test does not apply to the series in (2.3.2) since
the sequence of numbers

1, 1,
1

3
,
1

2
,
1

5
,
1

3
,
1

7
,
1

4
,
1

8
,
1

5
,
1

9
,
1

6
, . . . ,

4

n
(

3 + (−1)n+1
) , . . .

is not non-increasing. Further exploration of the series in (2.3.2) would show that it diverges.
The Alternating Series Test does not apply to the series in (2.3.3) since this series does

not satisfy the condition (ii):

lim
n→+∞

n+ 1

n
= 1 ,= 0 .

Again this series is divergent by the Test for Divergence.

Exercise 2.3.17. Determine whether the given series converges or diverges.

(a)
+∞
∑

n=1

cos

(

nπ +
1

n

)

(b)
+∞
∑

n=0

sin
(

n
π

2

)

(c)
+∞
∑

n=1

sin

(

nπ − 1

n

)

(d)
+∞
∑

n=1

1

n
cos

(

nπ +
1

n

)

(e)
+∞
∑

n=1

ln

(

1− (−1)n

n

)

(f)
+∞
∑

n=1

1

n
sin
(

n
π

2

)

(g)
+∞
∑

n=1

sin

(

n
π

2
+

1

n

)

(h)
+∞
∑

n=1

(−1)n+1

n− (−1)n
(i)

+∞
∑

n=1

(−1)n+1

2n− (−1)n
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Several of the exercises in the next section use the Alternating Series Test for conver-
gence. Do those exercises as well.

3.4. Absolute and Conditional Convergence. In the previous section we proved
that the alternating harmonic series

1− 1

2
+

1

3
− 1

4
+

1

5
− 1

6
+ · · · + (−1)n+1 1

n
+ · · · =

+∞
∑

n=1

(−1)n+1 1

n
converges. (2.3.8)

Later on we will see that the sum of this series is ln 2.
Talking about infinite series in class I have often used the analogy with an infinite

column in a spreadsheet and finding its sum. A series with positive and negative terms one
can interpret as balancing a checkbook with (infinitely) many deposits and withdrawals.
Looking at the alternating harmonic series (2.3.8) we see a sequence of alternating deposits
and withdrawals, infinitely many of them. What we proved in the previous section tells
that under two conditions on the deposits and withdrawals, although it has infinitely many
transactions, this checkbook can be balanced.

Now comes the first surprising fact! Let’s calculate how much has been deposited to
this account:

1 +
1

3
+

1

5
+

1

7
+ · · · + 1

2n− 1
+ · · · =

+∞
∑

n=1

1

2n− 1
.

Applying the Limit Comparison Test with the harmonic series it is easy to conclude this
series diverges. Looking at the withdrawals we see

−1

2
− 1

4
− 1

6
− · · ·− 1

2n− 1
− · · · = −1

2

+∞
∑

n=1

1

n
.

Again this is a divergent series. This is certainly a suspicious situation: Dealing with an
account to which an infinite amount of money has been deposited and an infinite amount
of money has been withdrawn. A simpler way to look at this is to look at the total amount
of money that went through this account (one can call this amount the total “activity” in
the account):

+∞
∑

n=1

∣
∣
∣
∣
(−1)n+1 1

n

∣
∣
∣
∣
= 1 +

1

2
+

1

3
+

1

4
+

1

5
+

1

6
+ · · ·+ 1

n
+ · · · (2.3.9)

This is the harmonic series which is divergent.
Since we know that an infinite amount of money has been deposited to this account

we might want to get into the spending mood sooner. So, we rearrange the deposits and
the withdrawals; we do two withdrawals after each deposit, keeping the amounts the same.
This results in the following infinite series:

1− 1

2
− 1

4
+

1

3
− 1

6
− 1

8
+

1

5
− 1

10
− 1

12
+

1

7
− 1

14
− 1

16
+ · · · . (2.3.10)

In any real life checking account just rearranging the deposits and the withdrawals might
result in an occasional low balance but the final balance will remain the same. Amazingly
this is not always the case with infinite series! (This is the second surprising fact!) For
example, the series in (2.3.10) and the series in (2.3.8) have identical terms which are
arranged differently; in Example 2.3.14 we proved that the series (2.3.8) converges and next
we will show that the series (2.3.10) also converges but to a different number.
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To be specific, denote the terms of the series (2.3.10) by bn, n ∈ N. Then

b3k−2 =
1

2k − 1
, b3k−1 = − 1

4k − 2
, b3k = − 1

4k
, k ∈ N.

It is clear that the series (2.3.10) has the same terms as the alternating harmonic series.
The terms of the alternating harmonic series have been reordered. For k ∈ N, the term
at the positions 2k − 1 (odd-indexed terms) in the alternating harmonic series is at the
position 3k − 2 in the series (2.3.10), the term which is at the position 4k − 2 (a “half”
of the even-index terms) in the alternating harmonic series is at the position 3k − 1 in the
series (2.3.10) and the term which is at the position 4k (another “half” of the even-index
terms) in the alternating harmonic series is at the position 3k in the series (2.3.10).

The following calculation indicates that the sum of the series in (2.3.10) is 1/2 of the
sum of the alternating harmonic series in (2.3.8). Let us calculate the 3n-th partial sum of
the series (2.3.10). Since this is a finite sum we can rearrange terms as we please. Here is
the calculation

S3n = 1− 1

2
− 1

4
+

1

3
− 1

6
− 1

8
+

1

5
− 1

10
− 1

12
+ · · ·+ 1

2n− 1
− 1

4n− 2
− 1

4n

=
1

2
− 1

4
+

1

6
− 1

8
+

1

10
− 1

12
+ · · ·+ 1

4n− 2
− 1

4n

=
1

2

(

1− 1

2
+

1

3
− 1

4
+

1

5
− 1

6
+ · · ·+ 1

2n − 1
− 1

2n

)

Hence, 3n-th partial sum of the series (2.3.10) is identical to one-half of the 2n-th partial
sum of the alternating harmonic series. Since the sum of the alternating harmonic series is
ln 2 we have

lim
n→+∞

S3n =
ln 2

2
.

Since

S3n+1 = S3n +
1

2n + 1
and S3n+2 = S3n +

1

2n+ 1
− 1

4n + 2
= S3n +

1

4n+ 2
,

we conclude that

lim
n→+∞

S3n+1 = lim
n→+∞

S3n+2 = lim
n→+∞

S3n =
ln 2

2
.

From the last three equalities one can prove rigorously that

lim
n→+∞

Sn =
ln 2

2
.

This proves that the series (2.3.10) converges to (ln 2)/2. That is, just a rearrangement of
the terms changed the sum.

This is a remarkable observation: a change of order of summation can change the sum
of an infinite series. This feature is closely related to the fact that the total activity of the
account expressed in (2.3.9) is a divergent series. This is a motivation for the following
definition.

Definition 2.3.18. A convergent series
+∞
∑

n=1

an is called conditionally convergent if

the series of the absolute values of its terms
+∞
∑

n=1

|an| is divergent.
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Definition 2.3.19. A series
+∞
∑

n=1

an is called absolutely convergent if the series of the

absolute values of its terms
+∞
∑

n=1

|an| is convergent.

Example 2.3.20. Prove that the series

1− 1

4
+

1

9
− 1

16
+

1

25
− 1

36
+ · · · + (−1)n+1 1

n2
+ · · · =

+∞
∑

n=1

(−1)n+1 1

n2

is absolutely convergent.

Solution. By the definition of absolute convergence we need to determine the conver-
gence of the series

+∞
∑

n=1

∣
∣
∣
∣
(−1)n+1 1

n2

∣
∣
∣
∣
=

+∞
∑

n=1

1

n2
= 1 +

1

4
+

1

9
+

1

16
+

1

25
+

1

36
+ · · ·

This is a p-series with p = 2. Therefore this series converges. (Notice that at the beginning of
Section 3.1 we proved that this series converges by comparing it to a telescoping series.) !

Remark 2.3.21. One can interpreted the series in Example 2.3.20 as a checking account
with infinitely many alternating deposits and withdrawals. In this case the total activity of
the account is a convergent series. Consequently the total amount deposited

1 +
1

9
+

1

25
+ · · · + 1

(2n− 1)2
+ · · · =

+∞
∑

n=1

1

(2n− 1)2
(2.3.11)

and the total amount withdrawn

1

4
+

1

16
+

1

36
+ · · ·+ 1

(2n)2
+ · · · =

+∞
∑

n=1

1

(2n)2
=

1

4

+∞
∑

n=1

1

n2
(2.3.12)

are both convergent series. As we can see, the total amount withdrawn is 1/4 of the total
activity of the account. We mentioned before that (we can not prove it in this course)

+∞
∑

n=1

1

n2
= 1 +

1

4
+

1

9
+

1

16
+

1

25
+

1

36
+ · · · = π2

6
.

Therefore
+∞
∑

n=1

(−1)n+1 1

n2
= 1− 1

4
+

1

9
− 1

16
+

1

25
− 1

36
+ · · · = 3

4

π2

6
− 1

4

π2

6
=

1

2

π2

6
=

π2

12

Theorem 2.3.22. If a series

+∞
∑

n=1

an is absolutely convergent, then it is convergent.

Proof. Assume that
+∞
∑

n=1

an is absolutely convergent, that is assume that
+∞
∑

n=1

|an| is

convergent. Then the algebra of convergent series the series
+∞
∑

n=1

2 |an| is convergent. Since
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−|an| ≤ an ≤ |an|, we conclude that

0 ≤ an + |an| ≤ 2 |an| for all n ∈ N.

By the Comparison Test it follows that the series
+∞
∑

n=1

(

an+ |an|
)

is convergent. The algebra

of convergent series implies that the series
+∞
∑

n=1

(
(

an + |an|
)

− |an|
)

=
+∞
∑

n=1

an

is also convergent. !

The following stronger versions of the Ratio and the Root test can be applied to any
series to determine whether a series converges absolutely or it diverges.

Theorem 2.3.23 (The Ratio Test). Let

+∞
∑

n=1

an be a series for which lim
n→+∞

|an+1|
|an|

= R.

Then

(a) If R < 1, then the series converges absolutely.
(b) If R > 1, then the series diverges.

Theorem 2.3.24 (The Root Test). Let

+∞
∑

n=1

an be a series for which lim
n→+∞

n
√

|an| = R.

Then

(a) If R < 1, then the series converges absolutely.
(b) If R > 1, then the series diverges.

Notice that if the root or the ratio test apply to a series, then series either converges
absolutely or diverges. This implies that if a series converges conditionally, then either

lim
n→+∞

|an+1|
|an|

= 1 or lim
n→+∞

|an+1|
|an|

does not exist,

and also

lim
n→+∞

n
√

|an| = 1 or lim
n→+∞

n
√

|an| does not exist.

In other words, the root and the ratio test cannot lead to a conclusion that a series converges
conditionally.

It turns out that our only tool which can be used to conclude conditional convergence
is the alternating series test.

Exercise 2.3.25. Determine whether the given series converges conditionally, converges
absolutely or diverges.

(a)
+∞
∑

n=0

cos(nπ)

n2 + 1
(b)

+∞
∑

n=0

sin(nπ/2)

n+ 1
(c)

+∞
∑

n=1

(−1)n+1

√
n

(d)
+∞
∑

n=1

(−1)n+1

n
√
n

(e)
+∞
∑

n=1

(−1)n+1

np
(f)

+∞
∑

n=1

(−1)n+1 e
1/n

n
(g)

+∞
∑

n=1

(−1)n+1n
n

n!
(h)

+∞
∑

n=1

(−1)n+1

√
n

n+ 1

(i)
+∞
∑

n=2

(−1)n+1

lnn
(j)

+∞
∑

n=1

(−1)n+1 lnn

n
(k)

+∞
∑

n=1

(−1)n+1e1/n (l)
+∞
∑

n=1

(−1)n+1 ln
n+ 1

n
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In problem (e) determine all the values of p for which the series converges absolutely,
converges conditionally and diverges.

Exercise 2.3.26. Determine whether the given series converges conditionally, converges
absolutely or diverges.

(a)
+∞
∑

n=1

(−1)n+1 (sinn)
2

n2
(b)

+∞
∑

n=1

(−1)n+1 4

2n + 3 + (−1)n

(c)
+∞
∑

n=1

(−1)n+1 cos

(
1

n

)

(d)
+∞
∑

n=1

(−1)n+1 sin

(
1

n

)
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4. Infinite Series of functions

4.1. Power Series. The most important series is the geometric series:

a+ a r + a r2 + a r3 + · · · + a rn + · · · =
+∞
∑

n=0

a rn .

If −1 < r < 1 the geometric series converges. Moreover, we proved

+∞
∑

n=0

a rn = a+ a r + a r2 + a r3 + · · · + a rn + · · · = a

1− r
for − 1 < r < 1 . (2.4.1)

Replacing r by x and letting a = 1 we can rewrite the formula in (2.4.1) as

+∞
∑

n=0

xn = 1 + x+ x2 + x3 + · · · + xn + · · · = 1

1− x
for − 1 < x < 1 . (2.4.2)

The formula (2.4.2) can be viewed as a representation of the function

f(x) =
1

1− x
, −1 < x < 1,

as an infinite series of powers of x: 1 = x0, x, x2, x3, . . .:

1

1− x
= 1 + x+ x2 + x3 + · · ·+ xn + · · · =

+∞
∑

n=0

xn for − 1 < x < 1 .

You will agree that the (non-negative) integer powers of x are very simple functions.
Therefore, it is natural to explore the following question:

Q1:
Which functions can be represented as infinite series of
constant multiples of (non-negative) integer powers of
x?

In other words: Which functions x /→ f(x) can be represented as

f(x) = a0 + a1 x+ a2 x
2 + a3 x

3 + · · ·+ an x
n + · · · =

+∞
∑

n=0

an x
n for ? < x < ? .

The infinite series

a0 + a1 x+ a2 x
2 + a3 x

3 + · · ·+ an x
n + · · · =

+∞
∑

n=0

an x
n (2.4.3)

is called a power series.
The first question to answer about a power series is:

Q2:
For which real numbers x does the power series con-
verge?
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Since we are working with the powers of x and since there is no restriction on the signs
of an and x, we can use Theorems 2.3.23 and 2.3.24 (the ratio and root test) to determine
the absolute convergence of the power series (2.4.3). To apply Theorem 2.3.23 we calculate

lim
n→+∞

|an+1| |x|n+1

|an| |x|n
= lim

n→+∞

|an+1| |x|
|an|

= |x| lim
n→+∞

|an+1|
|an|

.

Assume that

lim
n→+∞

|an+1|
|an|

= L. (2.4.4)

If L = 0, then Theorem 2.3.23 implies that the series (2.4.3) converges for all real numbers
x. If L > 0, then Theorem 2.3.23 implies that the series (2.4.3)

converges absolutely for |x|L < 1, that is for − 1

L
< x <

1

L

diverges for |x|L > 1, that is for x < − 1

L
or x >

1

L

If the limit in (2.4.4) does not exist, then no conclusion about the convergence or divergence
can be deduced.

To apply Theorem 2.3.24 we calculate

lim
n→+∞

n
√

|an| |x|n = |x| lim
n→+∞

n
√

|an| .

Assume that

lim
n→+∞

n
√

|an| = L. (2.4.5)

If L = 0, then Theorem 2.3.24 implies that the series (2.4.3) converges for all real numbers
x. If L > 0, then Theorem 2.3.24 implies that the series (2.4.3)

converges absolutely for |x|L < 1, that is for − 1

L
< x <

1

L

diverges for |x|L > 1, that is for x < − 1

L
or x >

1

L

If the limit in (2.4.5) does not exist, then no conclusion about the convergence or divergence
can be deduced.

Example 2.4.1. Consider the power series

1

0!
+

1

1!
x+

1

2!
x2 +

1

3!
x3 + · · · + 1

n!
xn + · · · =

∞
∑

n=0

1

n!
xn.

In this example an = 1/n!, n = 0, 1, 2, . . .. We calculate

L = lim
n→+∞

|an+1|
|an|

= lim
n→+∞

1
(n+1)!

1
n!

= lim
n→+∞

1

n+ 1
= 0.

Consequently the given power series converges absolutely for every x ∈ R.

Example 2.4.2. Consider the power series

1 + 2x+ 3x2 + 4x3 + · · ·+ (n+ 1)xn + · · · =
∞
∑

n=0

(n+ 1)xn.
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Here an = n+ 1, n = 0, 1, 2, . . . and we calculate

L = lim
n→+∞

|an+1|
|an|

= lim
n→+∞

n+ 2

n+ 1
= 1.

Consequently the given power series converges absolutely for every x ∈ (−1, 1). Clearly the
series diverges for x = −1 and for x = 1.

Example 2.4.3. Consider the power series

x− 1

2
x2 +

1

3
x3 − 1

4
x4 + · · ·+ (−1)n+1 1

n
xn + · · · =

∞
∑

n=0

(−1)n+1 1

n
xn.

Here a0 = 0 and an = (−1)n+11/n, n = 1, 2, . . .. We calculate

L = lim
n→+∞

|an+1|
|an|

= lim
n→+∞

1
n+1
1
n

= lim
n→+∞

n

n+ 1
= 1.

Consequently the given power series converges absolutely for every x ∈ (−1, 1). Clearly the
series diverges for x = −1 and converges conditionally for x = 1.

Example 2.4.4. Consider the power series

1 +
1

2
x+

1

22
x2 +

1

23
x3 + · · ·+ 1

2n
xn + · · · =

∞
∑

n=0

1

2n
xn. (2.4.6)

Here an = 2−n, n = 0, 1, 2, . . .. We calculate

L = lim
n→+∞

|an+1|
|an|

= lim
n→+∞

1
2n+1

1
2n

= lim
n→+∞

1

2
=

1

2
.

Consequently the given power series converges absolutely for every x ∈ (−2, 2). Clearly the
series diverges for x = −2 and for x = 2.

Notice that we can actually calculate the sum of this series using the following substi-
tution (or you can call this a trick). Substitute u = x/2 in (2.4.6). Then (2.4.6) becomes

1 + u+ u2 + u3 + · · ·+ un + · · · =
∞
∑

n=0

un. (2.4.7)

We know that the sum of the series in (2.4.7) is 1/(1 − u) for u ∈ (−1, 1), that is,

1 + u+ u2 + u3 + · · · + un + · · · =
∞
∑

n=0

un =
1

1− u
, u ∈ (−1, 1).

Substituting back u = x/2 we get:

1 +
1

2
x+

1

22
x2 +

1

23
x3 + · · ·+ 1

2n
xn + · · · =

∞
∑

n=0

1

2n
xn =

2

2− x
, x ∈ (−2, 2).

Example 2.4.5. Consider the power series

1

1
x+

1

4
x2 +

1

9
x3 + · · ·+ 1

n2
xn + · · · =

∞
∑

n=1

1

n2
xn.
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We calculate

L = lim
n→+∞

|an+1|
|an|

= lim
n→+∞

1
(n+1)2

1
n2

= lim
n→+∞

n2

(n+ 1)2
= 1.

Consequently the given power series converges absolutely for every x ∈ (−1, 1). For x = 1
we get the series

∑∞
n=1

1
n2 . Therefore, for x = 1 the given power series converges. For

x = −1 we get the alternating series which converges absolutely. Therefore the given power
series converges absolutely on [−1, 1].

The following theorem answers the question Q2 above.

Theorem 2.4.6. Let

a0 + a1 x+ a2 x
2 + a3 x

3 + · · ·+ an x
n + · · · =

+∞
∑

n=0

an x
n

be a power series. Then one of the following three cases holds.

(A) The power series converges absolutely for all x ∈ R.
(B) There exists r > 0 such that the power series converges absolutely for all x ∈

(−R,R) and diverges for all x such that |x| > R.
(C) The power series diverges for all x ,= 0. For x = 0 it is trivial that the power series

converges.

The set on which a power series converges is called the interval of convergence. The
number R > 0 in Theorem 2.4.6 (B) is called the radius of convergence. In the case (A) in
Theorem 2.4.6 we write R = +∞. In the case (C) in Theorem 2.4.6 we write R = 0.

Remark 2.4.7. In the case (B) in Theorem 2.4.6 the convergence of the power series at
the points x = R and x = −R must be determined by studying the infinite series

+∞
∑

n=0

anR
n and

+∞
∑

n=0

an (−R)n.

Examples in this section show that the interval of convergence of a power series can have
any of these four forms (−R,R), (−R,R], [−R,R) and [−R,R].

4.2. Functions Represented as Power Series. The following theorem lists proper-
ties of functions defined by a power series.

Theorem 2.4.8. Let R > 0 be the radius of convergence of the power series

a0 + a1 x+ a2 x
2 + a3 x

3 + · · ·+ an x
n + · · · =

+∞
∑

n=0

an x
n.

Then the function f defined on (−R,R) by

f(x) := a0 + a1 x+ a2 x
2 + a3 x

3 + · · ·+ an x
n + · · · =

+∞
∑

n=0

an x
n, −R < x < R,

has the following three properties:

(a) The function f is continuous on (−R,R).



4. INFINITE SERIES OF FUNCTIONS 83

(b) The derivative f ′(x) exists for all x ∈ (−R,R) and

f ′(x) = a1 + 2a2 x+ 3a3 x
2 + · · · + nan x

n−1 + (n+ 1)an+1x
n + · · · =

+∞
∑

n=0

(n+ 1)an+1 x
n.

(c) The function f has derivatives of all orders 1, 2, 3, . . ., at all points of (−R,R). In
particular

f(0) = a0, f ′(0) = a1, f ′′(0) = 2 a2, f ′′′(0) = 3 · 2 a3, . . . , f (n)(0) = n! an, . . . . (2.4.8)

(d) For all x ∈ (−R,R) we have

∫ x

0
f(t)dt = a0x+

a1
2

x2 +
a2
3

x3 + · · · + an−1

n
xn +

an
n+ 1

xn+1 + · · · =
+∞
∑

n=1

an−1

n
xn.

Theorem 2.4.9. Let R > 0 be the radius of convergence of the power series

a0 + a1 x+ a2 x
2 + a3 x

3 + · · ·+ an x
n + · · · =

+∞
∑

n=0

an x
n.

Let f be the function defined on (−R,R) by

f(x) := a0 + a1 x+ a2 x
2 + a3 x

3 + · · ·+ an x
n + · · · =

+∞
∑

n=0

an x
n, −R < x < R.

If the series
+∞
∑

n=0

anR
n

converges, then the limit limx↑R f(x) exists and

lim
x↑R

f(x) =
+∞
∑

n=0

anR
n.

If the series
+∞
∑

n=0

an (−R)n

converges, then the limit limx↓R f(x) exists and

lim
x↓R

f(x) =
+∞
∑

n=0

an (−R)n.

Example 2.4.10. By (2.4.2) we have

1

1− x
= 1 + x+ x2 + x3 + · · ·+ xn + · · · for − 1 < x < 1 . (2.4.9)

Thus the function f(x) = 1/(1 − x) defined for x ∈ (−1, 1) can be represented by a power
series. Applying Theorem 2.4.8 we get

1

(1− x)2
= 1 + 2x+ 3x2 + 4x3 + · · ·+ nxn−1 + (n+ 1)xn + · · · for − 1 < x < 1.
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Example 2.4.11. Substituting −x for x in (2.4.9) we get

1

1 + x
= 1− x+ x2 − x3 + · · ·+ (−1)nxn + · · · for − 1 < x < 1 . (2.4.10)

Thus the function f(x) = 1/(1 + x) defined for x ∈ (−1, 1) can be represented by a power
series. Applying Theorem 2.4.8 (d) we get

ln(1+x) =

∫ x

0

1

1 + t
dt = x− 1

2
x2+

1

3
x3− 1

4
x4+ · · ·+(−1)n+1 1

n
xn+ · · · for −1 < x < 1 .

For x = 1 the above series is the alternating harmonic series which converges conditionally.
By Theorem 2.4.9 we have

lim
x↑1

ln(1 + x) =
+∞
∑

n=0

(−1)n+1 1

n
.

Since the function ln(1 + x) is continuous at x = 1 we have

lim
x↑1

ln(1 + x) = ln 2.

Thus we found the sum of the alternating harmonic series

+∞
∑

n=0

(−1)n+1 1

n
= ln 2.

Example 2.4.12. Substituting x2 for x in (2.4.10) we get

1

1 + x2
= 1− x2 + x4 − x6 + · · ·+ (−1)nx2n + · · · for − 1 < x < 1 .

Thus the function f(x) = 1/(1 + x2) defined for x ∈ (−1, 1) can be represented by a power
series. Applying Theorem 2.4.8 (d) we get

arctan(x) =

∫ x

0

1

1 + t2
dt = x−1

3
x3+

1

5
x5−1

7
x7+· · ·+(−1)n+1 1

2n− 1
x2n−1+· · · for −1 < x < 1 .

with x = 1 the above series is

1− 1

3
+

1

5
− 1

7
+ · · ·+ (−1)n+1 1

2n− 1
+ · · ·

is a conditionally convergent alternating series. By Theorem 2.4.9 we have

lim
x↑1

arctan x =
+∞
∑

n=1

(−1)n−1 1

2n − 1
.

We did not prove it, but it can be proved that arctan x is a continuous function. Therefore

lim
x↑1

arctan x = arctan 1 =
π

2
.

Thus we found a representation of π as an infinite sum:

π

4
= 1− 1

3
+

1

5
− 1

7
+ · · ·+ (−1)n+1 1

2n− 1
+ · · · =

+∞
∑

n=1

(−1)n−1 1

2n − 1
.
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4.3. Taylor series at 0 (Maclaurin series). In the preceding section we found power
series representations for several well known functions. It turns out that all well known
functions can be represented as power series. The key step in finding the power series
representation of elementary functions are formulas (2.4.8) which establish the relationship
between the coefficients an, n = 0, 1, 2, . . . , of a power series and the derivatives of the
function f which is represented by that power series. We rewrite formulas (2.4.8) as

a0 = f(0), a1 = f ′(0), a2 =
1

2!
f ′′(0), a3 =

1

3!
f (3)(0), . . . , an =

1

n!
f (n)(0), . . . . (2.4.11)

Let a > 0 and let f be a function defined on (−a, a). Assume that f has all derivatives
on (−a, a). Then the series power series

f(0) + f ′(0)x+
1

2!
f ′′(0)x2 +

1

3!
f (3)(0)x3 + · · ·+ 1

n!
f (n)(0)xn + · · · =

+infty
∑

n=0

1

n!
f (n)(0)xn

is called Taylor series at 0 or Maclaurin series of f .
Using formulas (2.4.11) it is not difficult to calculate a Maclaurin series for a given

function. The difficulties arise in proving that the function defined by such power series is
identical to the given function. Fortunately this is true for all well known functions.

Example 2.4.13. Let f(x) = ex = exp(x), x ∈ R. Then f (n)(x) = ex for all n =
0, 1, 2, . . .. Therefore the coefficients of the Maclaurin series for the function exp are an =
1/n! and it can be proved that for all x ∈ R we have

ex = 1 + x+
1

2!
x2 +

1

3!
x3 + · · · + 1

n!
xn + · · · .

Example 2.4.14. Let f(x) = sin(x), x ∈ R. Then

f ′(x) = cos(x), f ′′(x) = − sin(x), f (3)(x) = − cos(x), f (4)(x) = sin(x).

Consequently,
f (2k)(0) = 0, f (2k+1)(0) = (−1)k, k = 0, 1, 2, . . . .

Therefore the coefficients of the Maclaurin series for the function sin are

a2k = 0, a2k+1 = (−1)k
1

(2k + 1)!
, k = 0, 1, 2, . . . .

It can be proved that for all x ∈ R we have

sin(x) = x− 1

3!
x3 +

1

5!
x5 − 1

7!
x7 + · · ·+ (−1)k

1

(2k + 1)!
x2k+1 + · · · .

Example 2.4.15. Let f(x) = cos(x), x ∈ R. Then

f ′(x) = − sin(x), f ′′(x) = − cos(x), f (3)(x) = sin(x), f (4)(x) = cos(x).

Consequently,
f (2k)(0) = (−1)k, f (2k+1)(0) = 0, k = 0, 1, 2, . . . .

Therefore the coefficients of the Maclaurin series for the function cos are

a2k = (−1)k
1

(2k)!
, a2k+1 = 0, k = 0, 1, 2, . . . .

It can be proved that for all x ∈ R we have

cos(x) = 1− 1

2!
x2 +

1

4!
x4 − 1

6!
x6 + · · · + (−1)k

1

(2k)!
x2k + · · · .
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Example 2.4.16 (The Binomial Series). Let α ∈ R. Let f(x) = (1 + x)α, x ∈ (−1, 1).
Then

f ′(x) = α(1 + x)α−1,

f ′′(x) = α(α− 1)(1 + x)α−2,

f (3)(x) = α(α− 1)(α − 2)(1 + x)α−3,

...

f (n)(x) = α(α− 1) · · · (α− n+ 1)(1 + x)α−n

...

Therefore the coefficients of the Maclaurin series for the function f are

a0 = 1, an =
α(α− 1) · · · (α− n+ 1)

n!
, n ∈ N.

It can be proved that for all x ∈ (−1, 1) we have

(1+x)α = 1+
α

1!
x+

α(α − 1)

2!
x2+

α(α − 1)(α − 2)

3!
x3+· · ·+α(α− 1) · · · (α− n+ 1)

n!
xn+· · · .

This series is called binomial series. The reason for this name is that for α ∈ N the binomial
series becomes a polynomial:

(1 + x)1 = 1 + x

(1 + x)2 = 1 + 2x+ x2

(1 + x)3 = 1 + 3x+ 3x2 + x3

(1 + x)4 = 1 + 4x+ 6x2 + 4x3 + x4

(1 + x)5 = 1 + 5x+ 10x2 + 10x3 + 5x4 + x5

(1 + x)6 = 1 + 6x+ 15x2 + 20x3 + 15x4 + 6x5 + x6

...

(1 + x)m =
m
∑

k=0

(
m

k

)

xk, were m ∈ N and

(
m

k

)

=
m!

k!(m− k)!

The last formula is called the binomial theorem. The coefficients
(
m

k

)

=
m!

k!(m− k)!
=

m(m− 1) · · · (m− k + 1)

k!
with m,k ∈ N, 0 ≤ k ≤ m,

are called binomial coefficients. With a general α ∈ R and k ∈ N the coefficients
(
α

k

)

=
α(α− 1) · · · (α− k + 1)

k!

are called generalized binomial coefficients. By definition
(α
0

)

= 1. With this notation the
binomial series can be written as

(1 + x)α =
+∞
∑

k=0

(
α

k

)

xk for x ∈ (−1, 1). (2.4.12)
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Notice that formula (2.4.9) is a special case of (2.4.12), since
(
−1

k

)

=
(−1)(−2) · · · (−1− k + 1)

k!
=

(−1)kk!

k!
= (−1)k.

Notice also that differentiating (2.4.9) leads to

(1 + x)−2 = 1 +
+∞
∑

k=1

(−1)k(k + 1)xk for − 1 < x < 1 .

This is a binomial series with α = −2. To verify this we calculate
(
−2

k

)

=
(−2)(−3) · · · (−2− k + 1)

k!
=

(−1)k(k + 1)!

k!
= (−1)k(k + 1).

For α = 1/2 the expression
(
1/2

k

)

=
1
2

(

−1
2

) (

−3
2

)

· · ·
(
1
2 − k + 1

)

k!

=
1
2

(

−1
2

) (

−3
2

)

· · ·
(

−2k−3
2

)

k!

=
(−1)k−11 · 3 · · · · (2k − 3)

2k k!

Thus
√
1 + x = 1 +

1

2
x− 1

222!
x2 +

1 · 3
233!

x3 − 1 · 3 · 5
244!

x4 +
1 · 3 · 5 · 7

255!
x5 + · · · for − 1 < x < 1 .

Example 2.4.17. Let f(x) = arcsin(x), x ∈ [−1, 1]. To calculate the Maclaurin series
for arcsin we notice that

d

dx

(

arcsin(x)
)

=
1√

1− x2
, x ∈ (−1, 1).

Now calculate the Maclaurin series for the last function using the binomial series with
α = −1/2. For α = −1/2 and k ∈ N, we calculate

(
−1/2

k

)

=
−1

2

(

−3
2

) (

−5
2

)

· · ·
(

−1
2 − k + 1

)

k!

=
−1

2

(

−3
2

) (

−5
2

)

· · ·
(

−2k−1
2

)

k!

= (−1)k
1 · 3 · · · · · (2k − 1)

2k k!

Thus

1√
1 + x

= 1− 1

2
x+

1 · 3
222!

x2 +
1 · 3 · 5
233!

x3 − 1 · 3 · 5 · 7
244!

x4 + · · · for − 1 < x < 1 ,

that is,

1√
1 + x

= 1 +
+∞
∑

k=1

(−1)k
1 · 3 · · · · · (2k − 1)

2k k!
xk,
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or using the notation of double factorials

1√
1 + x

= 1 +
+∞
∑

k=1

(−1)k
(2k − 1)!!

(2k)!!
xk.

Substituting −x2 instead of x in the above formula we get

1√
1− x2

= 1 +
+∞
∑

k=1

(2k − 1)!!

(2k)!!
x2k, for − 1 < x < 1.

Since ∫ x

0

1√
1− t2

dt = arcsin(x),

integrating the last power series we get

arcsin(x) = x+
+∞
∑

k=1

(2k − 1)!!

(2k + 1)(2k)!!
x2k+1 =

+∞
∑

k=0

(2k
k

)

4k(2k + 1)
x2k+1, for − 1 < x < 1

It is interesting to note that the above expansion holds at both endpoints x = −1 and
x = 1. To prove this we need to recall Theorem 2.4.8 (a) and prove that the series

1 +
+∞
∑

k=1

(2k − 1)!!

(2k + 1)(2k)!!

converges. This series converges by The Comparison Test. (Hint: Prove by mathematical

induction that
(2k − 1)!!

(2k)!!
<

1
3
√
k

for all k ∈ N.) As a consequence we obtain that

1 +
+∞
∑

k=1

(2k − 1)!!

(2k + 1)(2k)!!
=

+∞
∑

k=0

(2k
k

)

4k(2k + 1)
=

π

2
.


