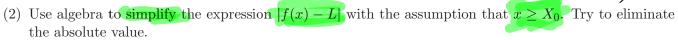
For most functions f a proof of $\lim_{x\to +\infty} f(x) = L$ based	d on the definition in the notes should consist from
the following steps. $x \to +\infty$	$\times - (T)$
the following steps. (1) Find X_0 such that $f(x)$ is defined for all $x \geq X_0$. Ju	stify your choice.



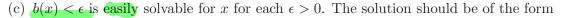
(3) Use the simplification from (2) to discover a BIN:

$$|f(x) - L| \le b(x)$$
 valid for $x \ge X_0$.

Here b(x) should be a simple function with the **following properties**:

(a)
$$b(x) > 0$$
 for all $x \ge X_0$.

(b)
$$b(x)$$
 is tiny for huge x .



2. yalnat

some expression involving ϵ

Rules

Warning: In the above inequality some expression involving ϵ must be huge when ϵ is tiny

(4) Use the solution of $b(x) < \epsilon$, that is some expression involving ϵ , and X_0 to define

$$X(\epsilon) = \max \left\{ X_0, \text{ some expression involving } \epsilon \right\}$$

(5) Use the BIN above to **prove** the implication $x > X(\epsilon) \implies |f(x) - L| < \epsilon$.

Note: The structure of this **proof** is always the same.

- (i) First assume that $x > X(\epsilon)$.
- (ii) The definition of $X(\epsilon)$ yields that

$$X(\epsilon) \ge X_0$$
 and $X(\epsilon) \ge$ some expression involving ϵ

(iii) Based of (5i) and (5ii) we conclude that the following two inequalities are true:

$$x > X_0$$
 and $x >$ some expression involving ϵ

(iv) From (3) part (c) we know that

$$x >$$
 some expression involving ϵ implies $b(x) < \epsilon$.

Therefore (5iii) yields that $b(x) < \epsilon$ is true.

(v) We also established that the BIN is true:

$$|f(x) - L| \le b(x)$$
 valid for $x \ge X_0$

(vi) Together $|f(x) - L| \le b(x)$ and $b(x) < \epsilon$ yield

$$|f(x) - L| < \epsilon.$$

This is exactly what we needed to prove.