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The definition of the absolute value function is
a piecewise definition
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The most important properties of
the absolute value

function are given
in the following

two theorems .
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this property is proved by
considering

two cases :

case l X s o
and case 2 .

x> o .
Since these

are

all possible cases ,
when we prove

the property for
each case

the proof will
be complete.
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The proof of case 2
is very similar
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two cases as

the previous proof.

e-V Hx EIR - X E IN and XE KI .

t.ro#RecadtuatlxI=maxhxiI-p7JmaIytaamI'IemaxlxiBT
↳ therefore

-XE IN and
KEIM
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Casey . then by Bk Xy so .

By the definition of
abs we have
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Proofs for these
cases are

similar .
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Now we prove
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Ciii) Fx ,y c-IDK we
have fixity , Is K- yl .
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Now we set a= x-y ,
b = y .
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