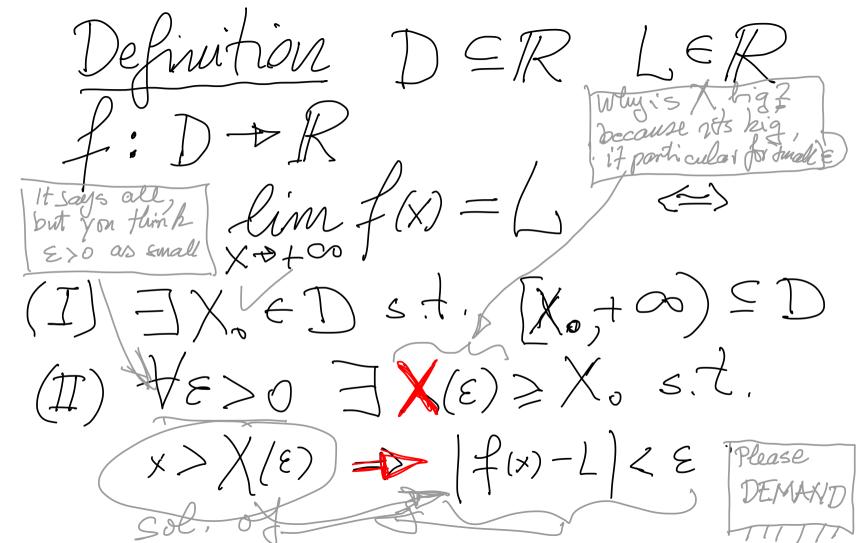
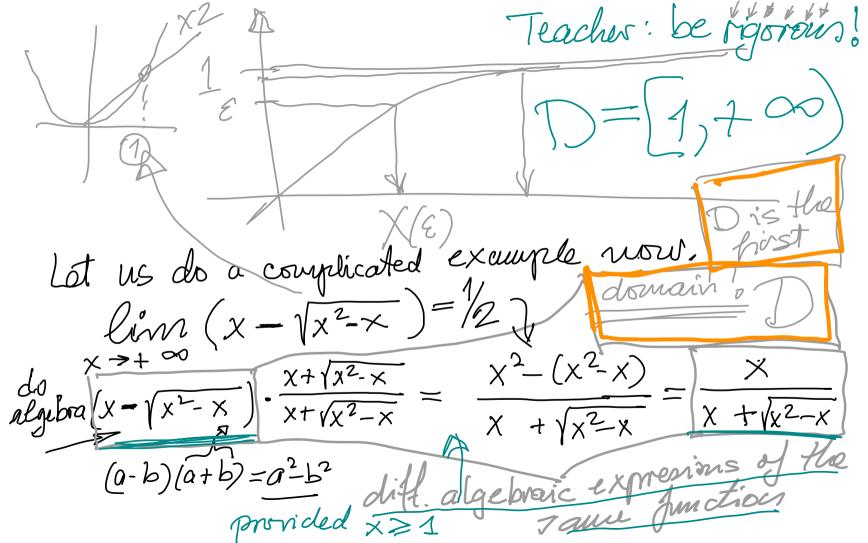
Limit at +00

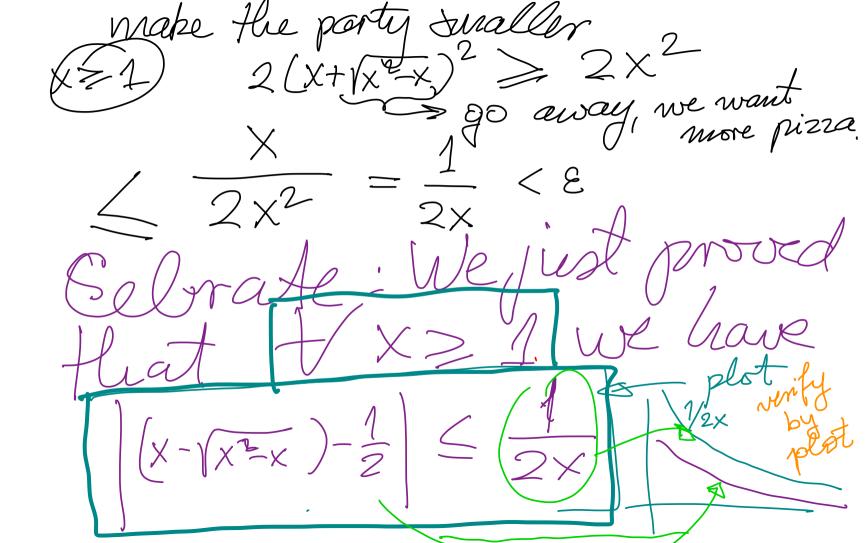
Example

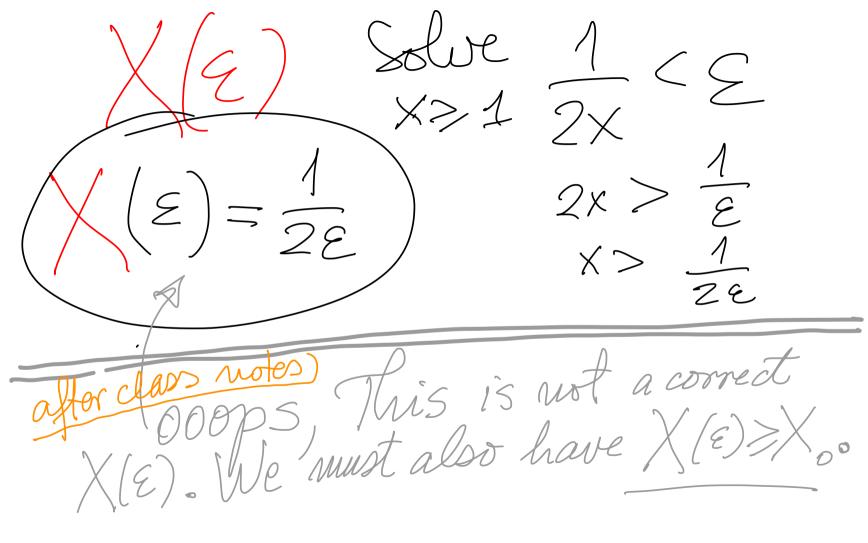




Txz 1 $\frac{1}{\chi + \sqrt{\chi^2 - \chi}} \left(\frac{-2}{2} \right)^{\prime \prime}$ $\chi - \sqrt{\chi^2 - \chi}$ ~~~ lunge x $- \int = 1_{j+\infty}$ Prove lin $(x - (x^2 - x)) = \frac{1}{2}$. $\chi_{\circ} = 4$ Let E>O be arbitrary. To find X(E) I work backwards from Solar H. Solve this $\left(\chi - \sqrt{\chi^2 - \chi}\right) - \frac{1}{2} \bigg| < \varepsilon$ for X. Sol. must loop like x> fonala VC to Solve this 2n 9,

| 24 _____ | -12 $\overline{X + \sqrt{x^2 - x}}$ $X \ge 1$ Х $2x - (x + (x^2 - x))$ $2(x+\sqrt{x^2-x})$ $x^{2} - (x^{2} - x)$ $x - \sqrt{x^2 - x}$ $2(x+\sqrt{x^2-x})^2$ $2(x+(x^2-x)) \neq 2(x+(x^2-x))^2$ I am ready for the mult. Top & hot by X+ 1x2-x pizza - par





Let $\varepsilon > 0$. Set $\chi(\varepsilon) = \max\{\frac{1}{2\varepsilon}, 1\}$. We will prove the following inequality: $x > max \left\{ \frac{1}{2\varepsilon}, 1 \right\} \Rightarrow \left[x - \sqrt{x^2 - x} - \frac{1}{2} \right] \leq \varepsilon$ Proof. In this proof we will use two inequalities $\forall x \ge 1$ $|x - \sqrt{x^2 - x} - \frac{1}{2}| \le \frac{1}{2x}$ This inequality is $\forall x \ge 1$ $|x - \sqrt{x^2 - x} - \frac{1}{2}| \le \frac{1}{2x}$ moved above. For machice. Record reprove it for machice. Should reprove it for machice. This inequality follows f(x) > 0 $\frac{1}{2x} < \varepsilon < x > \frac{1}{2\varepsilon}$ from basic algebra f(x) = 0 $\frac{1}{2x} < \varepsilon < x > \frac{1}{2\varepsilon}$

Assume $x > \max\{\frac{1}{2\epsilon}, 1\}$. Then x > 1. Since x > 1inequality solds, that is $|X-\sqrt{x^2-x}-\frac{1}{2}| < \frac{1}{2x}$. Since $x > max = \left\{ \frac{1}{2\epsilon}, \frac{1}{2} \right\}$ holds we have $x > \frac{1}{2\epsilon}$. By $X > \frac{1}{2\varepsilon}$ implies $\frac{1}{2x} < \varepsilon$. Finally, we proved two things $|X-\sqrt{x^2-x}-\frac{1}{2}|<\frac{1}{2x}$ and $\frac{1}{2x}<\varepsilon$ By the fransitivity property of order, we deduce $|X-\sqrt{x^2-x}-\frac{1}{2}|<\epsilon$. Thus, we proved the implication $|X-\sqrt{x^2-x}-\frac{1}{2}|<\epsilon$. $x>\max\{\frac{1}{2\epsilon},1\}$ $\Rightarrow |x-\sqrt{x^2-x}-\frac{1}{2}|<\epsilon$. Reviously red \Rightarrow has been greenified.