Definition of Limit

and its Negation

Dépurision of Limit at + 00 Let $D \subseteq \mathbb{R}$, $L \in \mathbb{R}$, $f: D \rightarrow \mathbb{R}$ We say that f has the limit L as $x \rightarrow +\infty$ $if(T) \exists X_0 \in D \text{ s.t. } (X_0, t^{\infty}) \in D$ $(II) \forall \varepsilon > 0 \exists X(\varepsilon) \ge X_{o} s.t.$ $x > \chi(\varepsilon) \Rightarrow |f(x) - L| < \varepsilon$ $\lim_{X \to +\infty} f(x) = \lim_{X \to +\infty} \frac{1}{1000} \frac{$ lim sin x = 0 is NOT TRUE

I have to prove that the negation of (II) is TRUE. The structure of (II) is as follows: structure of (II) is as follows: $\forall m = \forall s.t. P(u,v) \mid of p = 2$ Just. No TP(niv) | it is pA79 The negation of (II) is f(x) = X, f(x) = X, f(x) = X, f(x) = L = Eballs and f(x) = Lbad ε Set 1/2 $\varepsilon = \frac{1}{2}$ $-\frac{1}{2}$ $-\frac{1}$

Let $\chi = 0$. Let $\varepsilon = \frac{1}{2}$. Let $\chi \ge 0$. My BK about finx is that $\sin(kT) = 0$ the Z $\sin(\Xi + 2kT) = 1$ the Z $\sin(\Xi + 2kT) = -1$ the Z $\sin(\Xi + 2kT) = -1$ the Z $k \in \mathbb{Z}$ $x = \frac{\pi}{2} + kT > X$ $x = \frac{\pi}{2} + \left[\frac{\chi}{\pi}\right]$ Then $x > \chi$ and fiux = 1let z = 1/2. Let X>0 be arb. set x = == + []T. then X>X and [siux-0]>1/2 Huis proves that line fix =0 15 NOT true.

Much more is the Than lim fix = 0 is a lie linn sinx DOES NOT EXISJ How to move this? We have to prove that live fix = L is NOT TRUE for every LER. YLER JE>OS.t. YX>O JX>X St. [siux-L]>E 515 Jour Gnad

Proof, Let LER be arbitrary. Case 1 L≥ O. Let E = 1/2. Let X>0 be arbitrary. I will choose x>X such that Givx = -1. That is $X = \frac{3T}{2} + 2KT \rightarrow X$ choose k such that ignore $2KT \rightarrow X$ $k = \begin{bmatrix} X \\ 2 T \end{bmatrix} \quad k \ge \frac{X}{2T}$ be T

The following statement is true. For arbitrary $L \ge 0$ and $\varepsilon = \frac{1}{2}$ we have H X > 0 with $x = \frac{31}{2} + 21 \left[\frac{X}{2T} \right]$ we have X > X and $sin(x) - L = L + 1 \ge \frac{1}{2}$ This proves that lim finx = L is not the. $\frac{Case 2}{Let X > o} \text{ be arbitrary set } x = \frac{1}{2} + 2\pi \left[\begin{array}{c} X \\ ZT \end{array} \right]. \text{ Then}$ x > X and |sin x - L| = 1 - L > 1/2. This proves that true sin x = L is not true if $L \leq 0$. With these Two cases, the proof is complete.