Limit at a

$$
\lim _{x \rightarrow a} f(x)=L_{\substack{ \\
\begin{subarray}{c}{0} }} \\
{f: D \rightarrow \mathbb{R}} \\
{D \in \mathbb{R}}\end{subarray}}
$$

$$
\begin{array}{ll}
\lim _{x \rightarrow 0} \frac{\sin x}{x}=1 & \begin{array}{l}
\text { What this meas is } \\
\text { that }
\end{array} \\
f(x)=\frac{\sin x}{x} & \rightarrow f(0.0001) \approx 1 \\
D=\mathbb{R}\{0\} & \text { The question is show dose } \\
\text { at } 0 \text { the function } & \text { to } 1 \text { ? approxineatally } \\
\text { is not defined } &
\end{array}
$$

How close is $f(x)$ to 1 we measure by $\varepsilon>0$ (small) We want $|f(x)-1|<\varepsilon$ How do I control the size of $f(x)$? By choosing x clos to 0 .

$$
\begin{aligned}
& \text { distance pin } \\
& \text { fax) to } 1 \\
& \text { or error } \quad \text { in } \\
& \text { saying } f(x) \approx 1
\end{aligned}
$$

Now, cam you be bjacific how do de should o $x(x)-1 \mid<\varepsilon$?
ache $|f(x)-1|$

This is what
the limit definition arles!

$$
\lim _{x \rightarrow 2} \underbrace{}_{0} \underbrace{(3 x-1)}_{f(x)}=5\binom{\text { a simpler }}{\text { example }}
$$

 (cu other words, how small should $(\mid x-2)$ be
in order to have $\mid(3 x-1)-5)<\varepsilon ?_{0}$

This thous out to be just solving of $|(3 x-1)-5|<\varepsilon f r|x-2|$

$$
\left.\begin{array}{rl}
& 3|x-2| \\
& \begin{array}{c}
\text { Solving } \\
\text { is }
\end{array}|x-2|<\frac{\varepsilon}{3}
\end{array}\right\}
$$ for the best.

$$
\begin{aligned}
& |(3 x-1)-5|=|3 x-6|=|3(x-2)|(\because) \text { simplify and loose } \\
& \text { simplify and lope }
\end{aligned}
$$

Definition Let $a, L \in \mathbb{R}$ and $D \subseteq \mathbb{R}$.
A function $f: D \rightarrow \mathbb{R}$ has the limit L as x approaches a if the freloving two conditions are
(I) $\exists \delta_{0}>0$ such that $\left(a-\delta_{0}, a\right) \cup\left(a, a+\delta_{0}\right) \subseteq D$.
(II) $\forall \varepsilon>0 \quad \exists \delta(\varepsilon)$ such that $0<\delta(\varepsilon) \leq \delta_{0}$

$$
\lim _{x \rightarrow 2} x^{2}=4 \quad \text { Prove it } \nabla_{0}
$$

Green Stuff: $a=2, L=4, f(x)=x^{2}, D=\mathbb{R}$
(I) $\delta_{0}=1$ since clearly $(1,2) \cup(2,3) \subseteq \mathbb{R}$.
we can restrict our thinking to $x \in(1,2) \cup(2,3)$
(This is the spins of
our thinking
䨗

$$
0<|x-2|<1
$$

(II) Solve: $\left|x^{2}-4\right|<\varepsilon$ for $|x-2|$

$$
4-\varepsilon<x^{2}<4+\varepsilon
$$

Solve $\left|x^{2}-4\right|<\varepsilon$

$$
\begin{aligned}
& \text { Simplify }
\end{aligned}
$$

I summarze the proof of $\lim _{x \rightarrow 2} x^{2}=4$.
Proof. In this example $f(x)=x^{2}, D=\mathbb{R}, a=2, L=4$.
(I) Set $\delta_{0}=1$. Then $a-\delta_{0}=1, a+\delta_{0}=3$. Clearly $(1,2) \cup(2,3) \subseteq \mathbb{R}$.
(II) The following inequality holds

$$
\forall x \in(1,3) \quad\left|x^{2}-4\right| \leq 5|x-2|
$$

The proof of this inequality is given on the previous page. Let $\varepsilon>0$ be arbitrary.

Set $\delta(\varepsilon)=\min \left\{\frac{\varepsilon}{5}, 1\right\}$.
By the definition of minimum we have

$$
0<\min \left\{\frac{\varepsilon}{5}, 1\right\} \leqslant 1 \text {. }
$$

Now we will prove that

$$
\begin{aligned}
& \text { low we will prove that } \\
& 0<|x-2|<\min \left\{\frac{\varepsilon}{5}, 1\right\} \Rightarrow\left|x^{2}-4\right|<\varepsilon \text {. (RED) }
\end{aligned}
$$

Assume $0<|x-2|<\min \left\{\frac{\varepsilon}{5}, 1\right\}$.
Then $|x-2|<1$. Consequently $x \in(1,3)$. By inequality we condned $\left|x^{2}-4\right| \leq 5|x-2|$. Since $|x-2|<\min \left\{\frac{\varepsilon}{5}, 1\right\}$ we have $|x-2|<\frac{\varepsilon}{5}$

From the last two green boxes we deduce

$$
\left|x^{2}-4\right|<\varepsilon .
$$

Thus we proved the implication marked by (RED).

