$$
\lim _{x \rightarrow a} f(x)=\square
$$

Definition Let $a, f \in \mathbb{R}$ and $D \subseteq \mathbb{R}$, Let
$f: D \rightarrow \mathbb{R}$ be a function: We unite $\lim _{x \rightarrow a} f(x)=2$
if the poll. $x \rightarrow a \quad$ cords ar sot spied.
$(I) \exists \delta_{0}>0 \mathrm{~s}+\left(\operatorname{ar} \delta_{0}, a\right) \cup\left(a, a+\delta_{0}\right) \subseteq D$
(II) $\forall \varepsilon>0 \Rightarrow \delta(\varepsilon)$ st. $0<\delta(\varepsilon) \leq \delta_{0}$ and $0<|x-a|<\delta(\varepsilon) \Rightarrow \mid f(x)-22<\varepsilon$

Let $a>0$. Prove

$$
\lim _{x \rightarrow a} \frac{1}{x}=\frac{1}{a}
$$

Here $a>0$ given, $L=\frac{1}{a}, f(x)=\frac{1}{x}$ $D=\mathbb{R} \backslash\{0\}$. Now we proceed with the condition (I).

$$
\delta_{0}=\frac{a}{2}>\underset{\left(a-\frac{a}{2}\right)}{0}
$$

Here our function f is defined et $a, f(a)=1 / a$, so we can consider one interval $\left(\frac{a}{2}, \frac{3 a}{2}\right)$.
(*) Now we can focus all on values of x
which are in $\left(\frac{a}{2}, \frac{3 a}{2}\right)$.
To do conc. (II) we need to introduce $\varepsilon>0$ corbitrany and study

$$
\left|\frac{1}{x}-\frac{1}{a}\right|<\varepsilon
$$

In fact we need to solve this reeguality for $x-a$. The first step: treasure

$$
\begin{aligned}
& \left.\frac{\text { Simplify }}{\text { BK is our }} \underset{\text { vast background }}{\text { vas }}\left|\frac{1}{x}-\frac{1}{a}\right|=\left|\frac{a-x \mid}{\overline{B K}}\right| \frac{a-x}{x a} \right\rvert\, \underset{|x-a|}{\overline{\text { miles }} \text { tombs }} \\
& \stackrel{\text { vast background }}{\text { Knowledge }}|x-a|=|a-x| \left\lvert\, \frac{|x-a|}{|x a|}=\frac{|x-a|}{|x| a}=\right. \\
& \begin{array}{l}
\text { need to } \\
\text { solve }
\end{array} \\
& \text { we can restrict } x \in\left(\frac{a}{2}, \frac{3 a}{2}\right) \\
& =\frac{|x-a|}{x a} \leqslant \frac{|x-a|}{\frac{a}{2} a}=\frac{2}{a^{2}}|x-a| \\
& \text { party: We just } \\
& \forall x \in\left(\frac{a}{2}, \frac{3 a}{2}\right) \text { we have }\left|\frac{1}{x}-\frac{1}{a}\right| \leqslant \frac{2}{a^{2}}|x-a|
\end{aligned}
$$

Who wants to pole

$$
\begin{gathered}
\frac{2}{a^{2}}|x-a|<\varepsilon \text { for } 1 \text { l } 1 \times-a \mid \\
\mathbb{1}\left|<\frac{a^{2}}{2} \varepsilon\right| \\
|x-a|
\end{gathered}
$$

For $\varepsilon>0$, we
set

$$
\delta(\varepsilon)=\min \left\{\frac{a^{2}}{2} \varepsilon, \frac{a}{2}\right\}
$$

Now I have to prove:

$$
\begin{aligned}
& \text { Now I have to prove }: \\
& \left|0<|x-a|<\text { min }\left\{\frac{a^{2}}{2} \varepsilon, \frac{a}{2}\right\}\right. \\
& \text { assumption (hypothesis) }
\end{aligned} \Rightarrow\left|\frac{1}{x}-\frac{1}{a}\right|<\varepsilon
$$

RED

Assume that $0<|x-a|<\min \left\{\frac{a^{2}}{2} \varepsilon, \frac{\infty}{2}\right\}$.
As a consequence of our assumption hie have $|x-a|<\frac{a}{2}$ and $|x-a|<\frac{a^{2}}{2} \varepsilon$ (ai)
(1) by $B B B$ Since $x \in\left(\frac{a}{2}, \frac{3 a}{2}\right), b y$ $x \in\left(\frac{a}{2}, \frac{3 a}{2}\right) \rightarrow$ I conclude

$$
\begin{equation*}
\left|\frac{1}{x}-\frac{1}{a}\right| \leqslant \frac{2}{a^{2}}|x-a| \tag{62}
\end{equation*}
$$

By (61) and (62) I deduce $\left[\left|\frac{1}{x}-\frac{1}{a}\right|<\varepsilon\right.$.

Example $\quad \lim _{x \rightarrow a} x^{2}=a^{2}$

$$
\begin{aligned}
& D=\mathbb{R} \quad \delta_{0}=1 \quad(a-1, a+1) \\
& \left|x^{2}-a^{2}\right|=|x-a| \underbrace{|x+a|}_{\left.\begin{array}{l}
\text { What is } \\
\text { the target } \\
\text { Pin Pa if }
\end{array} \right\rvert\, x \in(a-1, a+1)} \leqslant ?|x-a|
\end{aligned}
$$

What is the maximum value of $|x+a|$ when x is restricted to $(a-1, a+1)$?

The value of the function $|x+a|$ at $x=a$ is $2|a|$ Since the graph of the function $1 x+a \mid$ looks like os it is reasonable to conclued that the maximum Ts lope (1) value is $2|a|+1$. So, I claim
$\forall x \in(a-1, a+1)$ we have $|x+a| \leq 2|a|+1$
Prove this? Assume $x \in(a-1, a+1)$. This means that $a-1<x<a+1$. Multiplying by (-1) we get $-a-1<-x<-a+1$.
Now we find an upper bound for $x+a$ and $-x-a$:

$$
\begin{aligned}
x+a<a+1+a=2 a+1 & \leq 2|a|+1 \\
-x-a<-a+1-a=-2 a+1 & \leqslant 2|a|+1
\end{aligned}
$$

Therefore $|x+a|=\max \{x+a,-x-a\} \leqslant 2|a|+1$. QED proof timider
Another way to prove the red box is to observe the equivalence $x \in(a-1, a+1) \Leftrightarrow|x-a|<1$ and use the triangle sueguality:

$$
\begin{aligned}
& \text { se the triangle inequality: } \\
& |x+a|=|x-a|+2|a|<2|a|+1 \text {. } \\
& |x-a+2 a| \leqslant \mid x \text {. }
\end{aligned}
$$

With the red box inequality proved we can prove $\lim _{x \rightarrow a} x^{2}=a^{2}$.

We need to syuplify: $\left|x^{2}-a^{2}\right|=|x-a||x+a| \leq \frac{1}{4}(2 a \mid+1)|x-a|$
Hence

$$
\begin{aligned}
& \forall x \in(a-1, a+1) \text { we have } \\
& \left|x^{2}-a^{2}\right| \leqslant(2|a|+1)|x-a|
\end{aligned}
$$

Cods only for $x \in(a-1, a+1)$ red boxed inequality.
Let $\varepsilon>0$ be arbitrary.
Set $\delta(\varepsilon)=\min \left\{\frac{\varepsilon}{2|a|+1}, 1\right\}$.
Now prove:

$$
\begin{aligned}
& {\left[0<|x-a|<\min \left\{\frac{\varepsilon}{2|a|+1}\right) 1\right] \Rightarrow\left|x^{2}-a^{2}\right|<\varepsilon} \\
& \begin{array}{l}
\text { You can do it, } \\
\text { You can prove it }
\end{array}
\end{aligned}
$$

