Move definitions
of Limits, Squeeze Theorems

Definition Let $a, L \in \mathbb{R}$ and $D \subseteq \mathbb{R}$.
A function $f: D \rightarrow \mathbb{P}$ has the limit L as $x \rightarrow a$ if the following two conditions are satisfied:
(I) $\bar{J} \delta_{0}>0$ st. $\left(a-\delta_{0}, a\right) \cup\left(a, a+\delta_{0}\right) \subseteq D$.
(II) $\forall \varepsilon>0 \quad \exists \delta(\varepsilon)$ such that $0<\delta(\varepsilon) \leqslant \delta_{0}$ and

$$
\begin{aligned}
& f \varepsilon>0 \Rightarrow \delta(\varepsilon) \text { such that } \\
& 0<|x-a|<\delta(\varepsilon) \Rightarrow|f(x)-L|<\varepsilon
\end{aligned}
$$

Simple examples $g(x)=|\operatorname{sign}(x)|$

$$
\lim _{x \rightarrow 0} g(x)=1
$$

$\lim _{x \rightarrow 0} \operatorname{sign} x$ DNE

Def. Let $a, L \in \mathbb{R}$ and $D \subseteq \mathbb{R}$. A function, $f: D \rightarrow \mathbb{R}$ has the limit L as x approaches a from the ingest it the following two cold are sachs: (I) $\exists \dot{\delta}_{0}>05.7$. $\left(\frac{\left(a, a+\delta_{0}\right)}{}\right) \subseteq D$
(III) $\forall \varepsilon>0 \exists \delta(\varepsilon)$ st. $0<\delta(\varepsilon) \leq \delta_{0}$ and

$$
\begin{aligned}
& \varepsilon>0 \Rightarrow d(\varepsilon) s+\cdot \\
& 0<x-a<\delta(\varepsilon) \Rightarrow|f(x)-L|<\varepsilon
\end{aligned}
$$

The notation for this limit is What are the changes for
x approoadies a tron
the lett

$$
x \geqslant a
$$

$$
\begin{array}{r}
\nabla\left(a-\delta_{0}, a\right) \subseteq D \\
0<a-x<\delta(\varepsilon) \Rightarrow \cdots
\end{array}
$$

In OUR main def. of dint the $A B S$ erecounres

To talk about limit of objects that are NOT real numbers we MUST have a concept of distance between then ers Let A be a sit of vied

OB be a set of dived
We assume we have a concept of distance an A and on B

$$
\begin{aligned}
& d_{A}\left(x_{1}, x_{2}\right) \text { distance } d_{B}\left(y_{1}, y_{2}\right) \\
& \underset{A_{1}\left(\frac{\left(1, x_{2}\right)}{}\right) \in \mathcal{A}}{ } \quad \&_{\text {metric }} \\
& \text { Metric Spaces }
\end{aligned}
$$

Must hare prop. of distance:
(1) $\forall x_{1}, x_{2} \in A \quad d_{A}\left(x_{1}, x_{2}\right) \geqslant 0$
(2) $\forall x_{1}, x_{2} \in A \quad d_{A}\left(x_{1}, x_{2}\right)=0 \Leftrightarrow x_{1}=x_{2}$
(3) $\forall x_{1}, x_{2} \in A \quad d_{A}\left(x_{1}, x_{2}\right)=d_{A}\left(x_{2}, x_{1}\right)$
(4) $\forall x_{1}, x_{2}, x_{3} \in A$

$$
d_{A}\left(x_{1}, x_{3}\right) \leqslant d_{A}\left(x_{1}, x_{2}\right)+d_{A}\left(x_{2}, x_{3}\right)
$$

TRIANGLE $X E Q$. Mmot be true

Def. of Limit $a \in A, b \in B$ $\mathcal{A} \subseteq A, f: D \rightarrow B$
The function f has the limit b as $x \in A$ approaches $a \in A$ if the following two oud are sat.

$$
\forall \varepsilon>d_{\varepsilon}(x, a)<\delta(\varepsilon) \Rightarrow d_{\beta}(f(x), b)<\varepsilon
$$

