Squeeze Theorems

- Sandwich
- Scissors

There thorems belong to a class of theorems "fromold limits new
Definition $a, L \in \mathbb{R}, D \subseteq \mathbb{R} . f: D \rightarrow \mathbb{R}$ has the linuist L as $x \rightarrow a$ if the following conditions are
salispred $\exists \delta_{0}>0$ st. $\left(a-\delta_{0}, a\right) \cup\left(a, a+\delta_{0}\right) \subseteq D$
(II) $\forall \varepsilon>0 \exists \delta(\varepsilon)$ such that $0<\delta(\varepsilon) \leqslant \delta_{0}$ and

$$
\begin{aligned}
& >0 \exists d(\varepsilon) \text { such the } \\
& 0<|x-a|<\delta(\varepsilon) \Rightarrow|f(x)-1|<\varepsilon
\end{aligned}
$$

In the Sanderich Squeeze Thin we have three function, call then $f_{1} g, h_{1}$. Two are friends, one is foe. friends i \& \& fo We low lind of theses about this about hus lion

Thur L et $a, L \in \mathbb{R}$ and $D \subseteq \mathbb{R}$. Let $f, g, h=D \rightarrow \mathbb{R}$
ASSume: (1) $\lim _{x \rightarrow a} f(x)=L$
为 $\lim _{x \rightarrow a} h(x)=L$
(3) $7 \eta_{0}>0$ such that $\left(a-\eta_{0}, a\right) \cup\left(a, a+\eta_{0}\right) \subseteq D$ and

$$
\forall x \in\left(a-\eta_{0}, a\right) \cup\left(a_{1} a+\eta_{0}\right) \text { we have } \xrightarrow{f(x) \leqslant g(x) \leqslant h(x)}
$$

Then $\lim g(x)=1 \rightarrow$ Remember: this I

- prove st use THE DEFINITION

Proof, Let $a, L \in \mathbb{R}$ and $D \subseteq \mathbb{R}$. Assume that the conditions (1), (2) and (3) are satisfied.
(1) means that f satisfies the definition of limit. In (I) we can take $\delta_{0}=\eta_{0}$ from (3).
(ii) tells us that
$\forall \varepsilon>0 \quad \exists \delta_{1}(\varepsilon)$ such that $0<\delta_{f}(\varepsilon) \leqslant \eta_{0}$ and x^{N}

$$
\varepsilon>0
$$

In (I) we can take $\delta_{0}=\eta_{0}$ form (3)
(it) tells us that

$$
L-\varepsilon<f(x)<L+\varepsilon
$$

$$
\begin{aligned}
& \forall \varepsilon>0 \Rightarrow \delta_{h}(\varepsilon) \text { st. } 0<\delta_{h}(\varepsilon) \leqslant \eta_{0} \text { and } \\
& \quad 0<|x-a|<\delta_{h}(\varepsilon) \Rightarrow|h(x)-L|<\varepsilon_{v} \text {. }
\end{aligned}
$$

We arlo assume (3): it is all greer ream $h=-h_{1}(x)<t+s$ What is, RED:: The Condition (II) in the DI of limit for g is RED:

$$
\begin{gathered}
\text { of limit for } g \text { is } k t \text {. } \quad \forall \delta_{g}(\varepsilon) \text { sit. } 0<\delta_{g}(\varepsilon) \leqslant \eta_{0} \text { and } \\
\forall|g(x)-L|<\varepsilon
\end{gathered}
$$

This is what we need:

$$
|g(x)-L|<\varepsilon
$$

a different way of uniting this is (Bure-Bell-Blei)

$$
L-\varepsilon<g(x)<L+\varepsilon
$$

How to achive this? Must use some green raff provided $\quad f(x)<g(x)<h(x)$

$$
L-\varepsilon<f(x)
$$

$$
\begin{aligned}
& \text { movided } \\
& 0<|x-a|<\delta_{f}(\varepsilon) \\
& \hline
\end{aligned}
$$

$$
\begin{aligned}
& h(x)<L+\varepsilon \\
& \text { provided that } \\
& 0<\mid x-a)<\delta,(\varepsilon)
\end{aligned}
$$

provided taal
the, last three green boxes tell us what to take for

$$
\underline{\delta_{g}(\varepsilon)}=\min \left\{\delta_{f}(\varepsilon), \delta_{g}(\varepsilon)\right\}
$$

Now the final proof.
Let $\varepsilon>0$ be arbitrary. Set $\delta_{g}(\varepsilon)=\min \left\{\delta_{f}(\varepsilon), \delta_{l}(\varepsilon), \eta_{0}\right\}$
Now we need to prove the implication:

$$
0<|x-a|<\min \left\{\delta_{f}(\varepsilon), \delta_{a}(\varepsilon), \eta_{0}\right\} \Rightarrow|g(x)-L|<\varepsilon
$$

Proof of \Rightarrow

Assume $0<|x-a|<\operatorname{ain}\left\{\delta_{f}(\varepsilon), \delta_{h}(\varepsilon), \eta_{0}\right\}$ A
Then $0<|x-a|<\eta_{0}$. Therefore $x \in\left(a-\eta_{0}, a\right) \cup\left(a, a+\eta_{0}\right)$.
By the assumption (3) this implies

$$
\begin{equation*}
f(x) \leqslant g(x) \leqslant h(x) \tag{B}
\end{equation*}
$$

Also, it follows from (A) that $0<|x-a|<\delta_{f}(\varepsilon)$.
Since $\lim _{x \rightarrow a} f(x)=L$, condition (IT) reads

$$
\begin{aligned}
& \text { e } \lim _{x \rightarrow a} f(x)=L \text {, condition (I) reads } \\
& 0<|x-a|<\delta_{f}(\varepsilon) \Rightarrow L-\varepsilon<f(x)<L+\varepsilon
\end{aligned}
$$

Consequently, $L-\varepsilon<f(x)$ (C)
Further it follows from (A) that $0<|x-a|<\delta_{h}(\varepsilon)$

Since $\lim _{x \rightarrow a} h(x)=L$, condition (II) reads

$$
0<|x-a|<\delta_{h}(\varepsilon) \Rightarrow L-\varepsilon<h(x)<L+\varepsilon
$$

From the last two green boxes we deduce

$$
\begin{equation*}
h(x)<L+\varepsilon \tag{D}
\end{equation*}
$$

Now we summurize our findings: we assumed (A). Based on this assumption we proved:
$f(x) \leq g(x) \leq h(x)$ (B) and $L-\varepsilon<f(x)$ (C) and $h(x)<L+\varepsilon$ (D)
The transitivity of order and (B), (C) (D) yield

$$
\text { ty of order and } L-\varepsilon<f(x) \leq g(x) \leq h(x)<L+\varepsilon
$$

That is $L-\varepsilon<g(x)<L+\varepsilon$
the lest green box is equivalent to $\quad|g(x)-L|<\varepsilon$
In conclusion (A) implies $\mid g(x)-L<\varepsilon$. Te ot is we proved the implication:
we moved the muphication:

This proves $\lim _{x \rightarrow a} g(x)=L$.

