Algebra of Limits (no proofs (D) Continuous ∇ Functions.

$$
\begin{aligned}
& D \subseteq \mathbb{R} \quad \begin{array}{l}
a, K, L \in \mathbb{R} \\
f: D
\end{array} \quad \lim _{x \rightarrow a} f(x)=K \\
& g: D \rightarrow \mathbb{R}\left\{\lim _{x \rightarrow a} g(x)=L\right.
\end{aligned}
$$

From pre-calculun you are fauniliar with algebra of functions
$f+g, f \cdot g, \frac{1}{g}, \frac{f}{g}$ ($\left.\begin{array}{l}\text { new functions } \\ \text { from old }\end{array}\right)$

$$
f+g: D \rightarrow \mathbb{R} \quad \forall x \in D \quad(f+g)(x)=f(x)+g(x)
$$

Theorem (Algebra of Limits)
Assume (1) $\lim _{x \rightarrow a} f(x)=K$ (2) $\lim _{x \rightarrow a} g(x)=L$
(A) If $h=f+g$, then $\lim _{x \rightarrow a} h(x)=k+L$
(3) If $h=f \cdot g$, then $\lim _{x \rightarrow a} h(x)=K L$
(C) If $h=\frac{1}{g}$ and $L \neq 0$, them $\lim _{x \rightarrow a} f(x)=\frac{1}{L}$
(D) If $h=\frac{f}{g}$ and $L \neq 0$, then $\lim _{x \rightarrow a} h(x)=\frac{K}{L}$
(\because no time for proofs, All the proofs are in the notes.

Definition Let $D \subseteq \mathbb{R}$. A function $f: D \rightarrow \mathbb{R}$ is coutimmons at a point c if the polling two conditions are satisfied
(I) $c \in D$, that is $f(c)$ is defined
(II) $\lim _{x \rightarrow c} f(x)=f(c) \quad B$? What does this wean?
this deticitigu hides the true first derninciples) is
The full def. (from Let $D \subseteq \mathbb{R}$ Bael A function $f: D \rightarrow \mathbb{R}$
Def. Let $D \subseteq \mathbb{R}$.cell A function $f: D \rightarrow \mathbb{R}$
is continuous at a point c if the the following is continuous at a point
two cord. are sat shed $\left(c-\delta_{0}, c+\delta_{0}\right) \subseteq D$
(II) $\forall \varepsilon>0 \exists \delta(\varepsilon)$ such that $0<\delta(\varepsilon)<\delta_{0}$ and

$$
|x-c|<\delta(\varepsilon) \Rightarrow|f(x)-f(c)|<\varepsilon
$$

$$
V:[0,+\infty) \rightarrow \mathbb{R}
$$

$\lim _{x \rightarrow 0} \sqrt{x}$ "does not exist"

$$
\lim _{x \rightarrow 0} \sqrt{x}=0
$$

$x \searrow 0$
To cover this case we modify the definition of continuity, by restricting D to be an interval in \mathbb{R} ?
finite intervals

9 kinds of intervals.

Definition Let $D \subseteq \mathbb{R}$ be an interval. A function $f: D \rightarrow \mathbb{R}$ is continuous at $C \in$ A $\underset{c}{ }$ satisfied if the following condition is
$\forall \varepsilon>0 \quad \exists \delta(\varepsilon)>0$ such that $\forall x \in D$ we have $|x-c|<\delta(\varepsilon) \rightarrow|f(x)-f(c)|<\varepsilon$ Def. Let $D \subseteq \mathbb{R}$ be an interval. A function $f: D \rightarrow \mathbb{R}$ is CONTINUOUS on D if it is continuous at every $c \in D$.

The complete version of the preceding def. is
Definition Let $D \subseteq \mathbb{R}$ be an interval. A function $f: D \rightarrow \mathbb{R}$ is ConricNoOUSon D if the following condition is satisfied:

$$
\begin{aligned}
& \forall c \in D \forall \varepsilon>0 \exists \delta(\varepsilon, \underline{c})>0 \text { such tact } \\
& \forall x \in D|x-c|<\delta(\varepsilon, c) \Rightarrow|f(x)-f(c)|<\varepsilon \text {. }
\end{aligned}
$$

If $\delta(\varepsilon, c)$ cam be chosen such that it does not depend on c, that is $\delta(\varepsilon, c)=\delta(\varepsilon)$, them $f: D \rightarrow \mathbb{R}$ is said
to be miformhy $\operatorname{CONTINvOUS}$.

Example $f(x)=\frac{1}{x}$ for $x \in(0,+\infty)$
Here $D=(0,+\infty)$. We need to find $\delta(\varepsilon, c)>0$ for any $c>0, \varepsilon>0$ such that

$$
\begin{aligned}
& \forall x>0 \quad|x-c|<\delta(\varepsilon, c) \Rightarrow\left|\frac{1}{x}-\frac{1}{c}\right|<\varepsilon \\
& \forall 1 \text { studer } \left\lvert\, \frac{1}{1}-1\right. \text { such }
\end{aligned}
$$

To discover $\delta(\varepsilon, c)$ we study $\left(\frac{1}{x}-\frac{1}{c}\right)$ and wait to tie it to $|x-c|$.
Assume $c>0$. Remember from limits, we can restrict our x to be close to $c\left(\delta_{0}>0\right)$ Here $\delta_{0}=c / 2$

Then restrict x to $\left(\frac{c}{2}, \frac{3 c}{2}\right)$

