Examples of Continuous Functions

Definition Let $D \subseteq \mathbb{R}$ be an interval.
A function $f: D \rightarrow \mathbb{R}$ is continuous on D
if the following condition is satisfied:
$\forall c \in D \forall \varepsilon>0 \exists \delta(\varepsilon, c)>0$ suckle that
$\forall x \in D$ we have $|x-c|<\delta(\varepsilon, c) \Rightarrow|f(x)-f(c)|<\varepsilon$
Example Reipricol function
$f(x)=\frac{1}{x}$ where $x \in(0,+\infty)$
Here $D=(0,+\infty), f(x)=1 / x$

Let $c>0$ be arbitrary and let $\varepsilon>0$ be arbitrary.
We have the following inequality
$\forall x \in\left(\frac{c}{2}, \frac{3 c}{2}\right)$ we have $\left|\frac{1}{x}-\frac{1}{c}\right| \leq \frac{2}{c^{2}}|x-c|$
Proof. Let $x \in\left(\frac{c}{2}, \frac{3 c}{2}\right)$. Then $x>c / 200$ Now siupplity

$$
\begin{aligned}
& \text { Loot } x \in\left(\frac{c}{2}, \frac{5 c}{2}\right) \cdot \\
& \left|\frac{1}{x}-\frac{1}{c}\right| \overline{B K}\left|\frac{c-x}{x c}\right|=\frac{|x-c|}{x c} \leq \frac{|x-c|}{c^{2} / 2}=\frac{2}{c^{2}}|x-c|
\end{aligned}
$$

Helps we find $\delta(\varepsilon, c)=\min \left\{\varepsilon \frac{c^{2}}{2}, \frac{c}{2}\right\}$ red $=$ green this is right coloring ${ }_{0}$

Now prove:

$$
\begin{aligned}
& \text { Now prove : } \\
& \forall x>0 \\
& x \in D
\end{aligned}|x-c|<\min \left\{\varepsilon \frac{c^{2}}{2}, \frac{c}{2}\right\} \Rightarrow\left|\frac{1}{x}-\frac{1}{c}\right|<\varepsilon
$$

Assume $x>0$ and $|x-c|<\operatorname{unin}\left\{\varepsilon \frac{c^{2}}{2}, \frac{c}{2}\right\}$.
From this I deduce $|x-c|<\frac{c}{2}$ and $\frac{2}{c^{2}}|x-c|<\varepsilon$ Hence holds, that is $\left|\frac{1}{x}-\frac{1}{c}\right| \leqslant \frac{2}{c^{2}}|x-c|$.
From the last two green boxes, I deduce by transicinity I greenified the red box. That is the PROOF.

You can see that $1 / x$ is UNIFORM 2Y CONTINNOUS on $[1,+\infty)$, but cut ion $(0,1$

Example $\sin x$ and $\cos x$
Here $D=\mathbb{R}$
The key in the previous proof was the inequality might of int c

$$
|f(x)-f(c)| \leqslant K|x-c|
$$

Amariaghy the following is true

$$
\forall_{x, c \in \mathbb{R}}|\sin x-\sin c| \leq|x-c|
$$

$$
\forall x, c \in \mathbb{R} \quad|\cos x-\cos c| \leq|x-c|
$$

Before proving this I want to point out how this shows on the graph of six as a sandirich squeeze. Fix $c \in \mathbb{R}$.
(Bell, Burt

A proof of:

$$
\forall x, c \in \mathbb{R} \quad|\cos x-\cos c| \leqslant|x-c|
$$

and $|\sin x-\sin c| \leqslant|x-c|$.
Let $X=(\cos x, \sin x)$ and $C=(\cos c, \sin c)$ X and C are points on tee unit circle. Compere the $\overline{C X} \leqslant \overparen{C X}$ the eerythes sleight live 4 smaller
straight line
The straight line in the shortest distance between two points. That is the basic property of a sterightint.

$$
\begin{aligned}
& \overline{\overline{C X}}=\sqrt{(\cos x-\cos c)^{2}+(\sin x-\sin c)^{2}} \geqslant \\
& \left(\geqslant \sqrt{(\cos x-\cos c)^{2}}=|\cos x-\cos c|\right. \\
& \text { also } D \geqslant \sqrt{(\sin x-\sin c)^{2}}=|\sin x-\sin c|
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \text { Hence } \\
& |\cos x-\cos c| \leqslant \overrightarrow{c x} \leqslant \overrightarrow{C x}|\leqslant|x-c| \\
& |\sin x-\sin c| \leqslant
\end{aligned}
$$

This proves bole and $|\cos x-\cos c| \leqslant|x-c|$ This proves both and $|\sin x-\sin c| \leq|x-c|$

Proof that $\overparen{C X} \leqslant|x-c|$.
Case 1. $|x-c| \leqslant \pi$
Case 1 a
$0<x-c \leqslant \pi$. In this case to reach the point X ow move so trounnterd lock wise from the point C for the angle $x-c$ redis Therefore $\overparen{C X}=x-c=|x-c|$
Case $1 b 0<c-x \leqslant \pi$. In this cos to reach the print C ore mores on the mint x for for the counterclock is e from the point
angel $c-x$ radians. Therefore

$$
\begin{aligned}
& \text { so Therefor } \\
& {\left[\frac{c x}{}=c-x=|x-c|\right.}
\end{aligned}
$$

Case $2|x-c|>\pi$. Since $\overparen{c x}$ is suable of two circular arcs correcting C and X we always have $\overparen{C X} \leq \pi$. Thus $\overparen{C X} \leq|x-c|$.

