Sequences

Definition A sequence is a functor whose domain is ether IN or W_{0}; $\mathbb{I N}$ is the set of all positive integers;
\mathbb{N}_{0} is the set of all nonnegative integers;

$$
\mathbb{N}^{\prime}=\{1,2,3, \ldots\}, N_{0}=\{0,1,2,3, \ldots\}
$$

We will study the sequences of real monies

$$
\Delta: \mathbb{N} \rightarrow \mathbb{R} \text { or } S: \mathbb{N}_{0} \rightarrow \mathbb{R}
$$

Examples (I) $1,2,3,4, \ldots ; a_{n}=n$ for all $n \in \mathbb{N}$.
(II) $1,2,2,3,3,3,4,4,4,4,5,5, \ldots$.

$$
r_{1}=1, r_{2}=2, r_{3}=2, r_{4}=3, r_{5}=3, r_{6}=3, r_{7}=4, \ldots
$$

Is there a formula for r_{n} ? Yes

$$
r_{n}=\left\lfloor\frac{1}{2}+\sqrt{2 n}\right\rfloor \text { for alln} \in \mathbb{N}_{0}
$$

(III) $1,2,4,8,16,32,64,128,256,512, \therefore$

Powers of two: $p_{n}=2^{n}, n \in \mathbb{N}_{0}$
(III) For any real nom berber $a \in \mathbb{R} \backslash\{0\}$ we have powers of a :

Here we use a recursive definition:

$$
p_{0}=1, \underbrace{2}_{\text {reansive formula }}
$$

$$
\begin{aligned}
p_{1}=a * p_{0}=a, & p_{2}=a * a=a^{2} \\
p_{3}= & a * a^{2}=a^{3}, \ldots
\end{aligned}
$$

$$
\begin{aligned}
& \text { (IV) } x_{1}=2, x_{n+1}=\frac{x_{n}}{2}+\frac{1}{x_{n}}, n \in \mathbb{N} \\
& x_{2}=\frac{2}{2}+\frac{1}{2}=\frac{3}{2}, x_{3}=\frac{3}{4}+\frac{2}{3}=\frac{17}{12} \approx\left(\begin{array}{l}
x_{n} \rightarrow \sqrt{2} \\
\text { as } n \rightarrow+\infty
\end{array}\right. \\
& x_{4}=\frac{17}{24}+\frac{12}{17} \approx, x_{5}=
\end{aligned}
$$

Computers LOVE recursive formulas V_{0}
(V) $x_{n}=\left(1+\frac{1}{n}\right)^{n}, n \in \mathbb{X}$
(VI) recurserily defined
$f_{0}=1, f_{n}=n * f_{n-1}$ all $n \in \mathbb{N}$

$$
\begin{aligned}
& f_{1}=1 * f_{0}=1, f_{2}=2 * 1, f_{3}=3 * 2 * 1 \\
& f_{4}=4 * 3 * 2 * 1, \ldots, f_{n}=n *(n-1) * *+1
\end{aligned}
$$

$f_{n}=n!\quad n$ factorial
$1,1,2,6,24,120,720, \ldots$ factorials
(III) First we define a segnence of terms

$$
t_{n}=\frac{1}{n!}, n \in \mathbb{N}_{0}
$$

Then we define the sequence of partial sums

$$
\begin{aligned}
& S_{0}=t_{0}, \quad S_{n}=د_{n-1}+t_{n}=s_{n-1}+\frac{1}{n!} \\
& S_{0}=\frac{1}{0!}, s_{1}=\frac{1}{0!}+\frac{1}{1!}, A_{2}=\frac{1}{0!}+\frac{1}{n!}+\frac{1}{2!} \\
& S_{n}=\frac{1}{0!}+\frac{1}{1!}+\frac{1}{2!}+\cdots+\frac{1}{n!}=\sum_{k=0}^{n} \frac{1}{k!} \\
& \binom{\infty n \rightarrow+\infty}{\sum_{k=0}^{n}+\infty}
\end{aligned}
$$

Definition of the limit of sequence $L \in \mathbb{R}$ A sequence $B: N \rightarrow \mathbb{R}$ has the limen as $n \rightarrow+\infty$ if the following condition is satisfied:
$\forall \varepsilon>0 \quad \exists \mathbb{N}(\varepsilon) \in \mathbb{R}$ such that
$\forall n \in \mathbb{N} \quad n>N(\varepsilon) \Rightarrow\left|S_{n}-L\right|<\varepsilon$
Example For $\forall r \in(-1,1)$ we have

$$
\lim _{n \rightarrow+\infty} r^{n}=0
$$

Proof. As with the limits $\lim _{x \rightarrow+\infty} f(x)=L$ we have to solve, forarlitvary $\varepsilon>0$,

clearly $r \neq 0$ is only of interact
for $n \in \mathbb{N}_{0}$.
Simplify: abs rules

$$
\text { les } \lim ^{\left.|r|\right|^{n}<\varepsilon} \ln \text { todobe }
$$

$$
\begin{aligned}
& \ln \text { is an increasing function: } \\
& \ln \left(|r|^{n}\right)<\ln (\varepsilon) \\
& n \ln (|r|)<\ln (\varepsilon)
\end{aligned}
$$

of inequality since we reed a solution in the from $n^{\prime}>X(\varepsilon)$. However $\ln (|r|)<0$ Since $0<|r|<1$. Therefore unbtiplying by en ($1 r 1$) will reverse the inequality: (BK)
The solution for n is

$$
n>\frac{\ln (\varepsilon)}{\ln (109)}=X /(\varepsilon)
$$

Now prove, for arbitrary $\varepsilon>0$ and $r \in(-1,1), r \neq 0$,

$$
\forall n \in \mathbb{N} \quad n>\frac{\ln (\varepsilon)}{\ln (|r|)} \Rightarrow\left|r^{n}-0\right|<\varepsilon
$$

Let $n \in \mathbb{N}$ and assume $n>\frac{\ln (\varepsilon)}{\ln (r \mid)}$.
Since $r(-1,1)$ and $r \neq 0$ we have $|r| \in(0,1)$. Hence $\ln (r r)<0$.
Multiplying by we get $n \ln (|r|)<\ln \varepsilon$.
BK about the \ln function: $\ln \left(|r|^{n}\right)<\ln \varepsilon$.
Since \ln is an increasing function, we have $|r|^{n}<\varepsilon$. Now $B K$ for the absolute value function yields $\left|r^{n}\right|<\varepsilon$. Consequently $\left|r^{n}-0\right|<\varepsilon$.

