Infinite Series

We are given a sequence, in this case reciprocals of the factorials

$$
\frac{1}{0!}, \frac{1}{1!}, \frac{1}{2!}, \ldots, \frac{1}{n!}, \cdots \text { reciprocals of the fence }\left\{\frac{1}{n!}\right\}
$$

\& Then we form the partial sums:

$$
\begin{aligned}
& S_{0}=\frac{1}{0!} \\
& S_{1}=\frac{1}{0!}+\frac{1}{1!} \\
& S_{2}= \\
& S_{3}= \\
& \vdots \\
& S_{n}=\frac{1}{0!}+\cdots+\frac{1}{n!}=\sum_{k=0}^{n} \frac{1}{k!}
\end{aligned}
$$

D
This is a new sequence, called the
partial sUMS

$$
\left\{S_{n}\right\}
$$

Then we ask whether the sequence $\left\{S_{n}\right\}$ Converges? We answered, Yes, and we write $\sum_{k=0}^{\infty} \frac{1}{k!}=e$

$$
e=\frac{1}{0!}+\frac{1}{1!}+\frac{1}{2!}+\cdots+\frac{1}{n!}+\cdots \begin{aligned}
& \text { indicating } \\
& \text { an rifinite } \\
& \text { sines }
\end{aligned}
$$ sunrises

In general, given a sequence $\left\{a_{n}\right\}$, that is $a_{1}, a_{2}, \ldots, a_{n}, \ldots$ we form a new sequence

$$
\begin{aligned}
& S_{1}=a_{1} \\
& S_{2}=a_{1}+a_{2}, \quad S_{n}=\sum_{k=1}^{n} a_{k}, \text { and we }
\end{aligned}
$$

whether the sequence $\left\{S_{n}\right\}$, of partial sums coneriga We introduce a symbol

$$
\sum_{n=1}^{\infty} a_{n} \text { and call rit an of INFINIE SERIES }
$$

If the sequence $\left\{S_{n}\right\}$ of partial fums converges we say that the Series $\sum_{n=1}^{\infty} a_{n}$ CONVERGES O thernise we say that the series $\sum_{n=1}^{\infty} a_{n}$ diverges.

Let $a_{n}=\left(\frac{1}{2}\right)^{n}$ with $n \in \mathbb{N}$.
Powers of $1 / 2$
Then we form the partial sums

$$
\begin{aligned}
& S_{1}=\frac{1}{2} \\
& S_{2}=\frac{1}{2}+\frac{1}{4}=\frac{3}{4} \\
& S_{3}=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}=7 / 8 \\
& S_{4}=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}=15 / 16 \\
& \vdots \\
& S_{n}=\sum_{k=1}^{n}\left(\frac{1}{2}\right)^{k}=1-\frac{1}{2^{n}} \\
& \lim _{n \rightarrow \infty} S_{n}=1
\end{aligned}
$$

In the language of infinite series: 1
The infinite Series $\sum_{n=1}^{\infty}\left(\frac{1}{2}\right)^{n}=\frac{1}{4}\left\{\begin{array}{l}\text { comergen } \\ t 01\end{array}\right.$ the sum of fiefiricte

Example

$$
a_{n}=(-1)^{n} \text { with } n \in \mathbb{N} \text {. }
$$

Powers of

$$
\begin{aligned}
& S_{1}=-1 \\
& S_{2}=-1+1=0 \\
& S_{3}=-1+1-1=-1 \\
& S_{4}=-1+1-1+1=0 \\
& \vdots \\
& S_{n}=\sum_{k=1}^{n}(-1)^{k}=\frac{1}{2}\left(-1+(-1)^{n}\right)
\end{aligned}
$$

Clearly the sequence $\left\{S_{n}\right\}$ does not converge. The infinite series $\sum_{n=1}^{\infty}(-1)^{n}$ diverges. Example $a_{n}=n$ with $n \in \mathbb{N}$.

$$
S_{1}=1
$$

$$
\begin{aligned}
& S_{2}=1+2=3\left\{\begin{array}{c}
1+2+\cdots+100=\sin _{2} 5050 \\
100+99+\cdots+1=\sin _{2}
\end{array}\right. \\
& S_{3}=1+2+3=6 \quad 101+101+\cdots+101=2 S_{100} \\
& S_{4}=1+2+3+4=10 \\
& \vdots_{n}=\sum_{k=1}^{n} k=\frac{n(n+1)}{2} \\
& \frac{100 * 101}{2}=S_{100} \\
& \text { triangular members } \\
& \lim _{n \rightarrow+\infty} S_{n}=+\infty \\
& \text { The series } \sum_{n=1}^{\infty} n \text { diverges }
\end{aligned}
$$

Definition An infinite series whose terms are powers of a real number is called a GEOMETRIC SERIES:

$$
\left.\begin{aligned}
& (1-r) S_{n}=a\left(1-r^{n+1}\right) \\
& \text { assume } r \neq 1
\end{aligned} \right\rvert\, \begin{aligned}
& C_{i=1}^{r}=1 \\
& S_{n}=n a
\end{aligned}
$$

$\lim _{n \rightarrow+\infty} S_{n}$? Does it comerge or NOT?
This depends on $\lim _{n \rightarrow+\infty} r^{n}$? Does this We proved that $\forall r \in(-1,1) \lim _{n \rightarrow+\infty} r^{n}=0$ We could prove $\forall r \notin(-1,1] \lim _{n \rightarrow \infty} r^{n} r^{n \rightarrow+\infty}$ Does Not Exist,

Algebra of Limits yields
$\forall r \in(-1,1)$ we have
(IrK $\lim _{n \rightarrow \infty} S_{n}=\lim _{n \rightarrow \infty} a \frac{1-r^{n+1}}{1-r}=\frac{a}{1-r}$
In the language of Infinite Series:
$\forall r \in(-1,1) \quad \sum_{n=0}^{\infty} a r^{n}=\frac{a}{1-r}$
$\forall r \notin(-1,1)$
$\forall a \in \mathbb{R} \backslash i 0 y$$\sum_{n=0}^{\infty} a r^{n}$ diverges

