Infinite Series

We are given a sequence, ne his case reciprocals of the factorials $\frac{1}{0!}, \frac{1}{1!}, \frac{1}{2!}, \dots, \frac{1}{n!}, \dots, \frac{1}{n!}, \dots, \frac{1}{n!}, \dots, \frac{1}{n!}$ A Then we form the particel sums: This is a new sequence, 5. = called Flre, $S_1 = \frac{1}{0!} + \frac{1}{1!}$ seguence of PARTIAL SUMS $\frac{1}{n!} = \sum_{k=0}^{\infty} k!$ $S_n = \frac{1}{0!} t$ Sul

Then we ask whether the sequence $S_n Y$ Converges? We answered, Yes, and we write $\frac{\infty}{k=0} \frac{1}{k!} = C$ k=0 k=0 $k = \frac{1}{0!} + \frac{1}{1!} + \frac{1}{2!} + \dots + \frac{1}{n!} + \dots$ indicating $k = \frac{1}{0!} + \frac{1}{1!} + \frac{1}{2!} + \dots + \frac{1}{n!} + \dots$ indicating Series In general, given a seguence { any, that is a, az, ..., an, ... we form a new sequence $S_{\eta} = a_{\eta}$ $S_2 = a_1 + a_2$ $S_n = \sum_{k=1}^{n} a_k$, and we

voluther the Sequence {Sug, of partial suns courses We introduce a symbol De and call nit an of Zan De and call nit an of Zan INFINITE SERIES If the segnence {Sn} of portial funs converges we say that the Series 2 an CONVERGES Otherwise we say that the series 2 an diverges. Then we form the partial Sums 1/2 Example let $a_n = \left(\frac{1}{2}\right)^n$ with $n \in \mathbb{N}$.

 S_1 $\overline{2}$ Î Ξ $\frac{1}{2} + \frac{1}{4} + \frac{1}{8}$ $S_{a} =$ $S_{4} = \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} =$ $S_{n} = \frac{n}{\sum_{k=1}^{n} (\frac{1}{\sum_{k=1}^{k}})^{k}} =$ $1 - \frac{1}{2^{n}}$ $\lim_{n \to \infty} S_n = 1$ the language of infinite Series: The infinite Series $\frac{2}{2}(\frac{1}{2})^{n} =$ In the language Ъ n=1

 $a_n = (-1)^n \text{ with } n \in \mathbb{N}. \quad \text{Powers of} \quad (-1)$ Example $S_q = -1$ $S_2 = -1 + 1 = 0$ $S_3 = -1 + 1 - 1 = -1$ $S_4 = -1 + 1 - 1 + 1 = 0$ $\dot{S}_{n} = \sum_{k=1}^{N} (-1)^{k} = \frac{1}{2} (-1 + (-1)^{n})$ Clearly the seguence $\{S_n\}$ does not converge. The infinite series $\sum_{n=1}^{\infty} (-1)^n$ diverges. $a_n = n$ with $n \in \mathcal{N}$. Example $S_1 = 1$

+100 = 5,5050+ 1 = 5,000 $S_2 = 4+2$ $101 + 101 + \dots + 109 = 2S_{100}$ $S_2 = 1+2+3$ 1+2+3+4 100 + 101 $S_{II} \equiv$ 100 ∩(n+1) Su triangular numbers 12=1 Pim Sn The Series $\sum_{n=1}^{\infty} n$ diverges

Définition An suffinite series whose terms are powers of a real number is called a GEOMETRIC SERIES. If a = 0, then all the $\sum_{n=0}^{+1} \alpha - \omega, \text{ (non use the terms are equal to 0, so terms are equal to 0, so the sum is 0. (Not interting) the sum is 0. (Not interting) So, we assume a <math>\neq 0$. $S_n = \alpha + \alpha r^2 + \alpha r^2 + \cdots + \alpha r^n + \alpha r^{n+1}$ $r S_n = \alpha r + \alpha r^2 + \alpha r^3 + \cdots + \alpha r^n + \alpha r^{n+1}$ $for S_n$ Subtract $S_n - rS_n = a - ar^{n+1}$

 $(1-r)S_n = \alpha(1-r^{n+1})$ (r=1 (ris a problem assume $r \neq 1$ $S_n = \alpha \frac{1 - r^{n+1}}{1 - r}$ True $\begin{bmatrix} S_n = n\alpha \\ for \\ all newlytos \\ all \\ r \in \mathbb{R} \setminus \{1\} \end{bmatrix}$ and all $a \in \mathbb{R}$ im S. 2 Door it lim Sn? Does it converge or NOT? N>+00 This depends on $\lim_{n \to +\infty} n^n$? Does fluis We proved that $\forall r \in (-1,1)$ lim $r^{n} = 0$ We could prove $\forall r \notin (-1,1]$ lim r^{n} Does Not Exist.

Algebra of Limits yields $\frac{\forall r \in (-1,1)}{|r| < 1} \text{ we have } \frac{1 - r^{n \neq 1}}{1 - r} = \frac{a}{1 - r}$ $\frac{|r| < 1}{|r| < 1} \text{ lin } S_n = \lim_{n \to \infty} a \frac{1 - r^{n \neq 1}}{1 - r} = \frac{a}{1 - r}$ I n the language of Jufinite Series: $\forall r \in (-1,1) \quad \sum_{n=1}^{\infty} ar^n = \frac{a}{1-r}$ $\forall r \notin (-1,1) \qquad \underset{n=0}{\overset{\infty}{\geq}} ar^n \qquad diverges$