Infinite Series - Geometric Series

- Harmonic Series

- Telescopic Series

Given a sequence {an} (or a: N=R) terms the expression $a_1 + a_2 + \dots + a_n + \dots = \sum a_k$ is called an infinite series. The basic question is wheter $\sum_{k=1}^{\infty} a_k$ converges or diverges. What this cesks is whether the seguence of partial suns $S_n = \sum_{k=1}^{a_k} Converges or$ n-th partial sum The most improtant example is the GOMETRIC SERIES

Hu terms of a geometric series are (aER, rER) $r^{o=1}$ a^{n} , ar^{2} , ar^{3} , ..., ar^{n-4} , ar^{n} , ar^{n+1} , ... G.S is Zark K=0 We proved ou Friday 1-r" $S_{n} = \sum_{k=0}^{n} \alpha r^{k} = \alpha \frac{1}{1-r}$ $Therefore \lim_{n \to \infty} S_{n} = \frac{\alpha}{1-r} \operatorname{provided} |r| < 1$ $T \cap \sum_{n \to \infty} r^{n} = \frac{1-r}{1-r} \operatorname{provided} |r| < 1$ $If |r| \ge 1$, then $\sum_{k=0}^{\infty} ar^k$

O de de de de de meaning of flee digit digit The meaning of flee decimal expansion is in fact the following INFINITE SERIES: INFINITE SERVERS of this Not 2 dn a geometric sories n=1 10ⁿ a geometric sories A big question is: Why does this series converge? The answer

is the Monotone convergence Thun? Set $S_n = \frac{n}{\sum_{k=1}^{n} \frac{d_k}{10^k}}$ the NThen (1) Son is Non decreasing $Hn \in \mathcal{N}$ Son is $\frac{1}{20^{n+1}} = \frac{1}{20^{n+1}} = 0$ Therefore Sn' Som HnEN 2 The sequence {Sn'S is bodd above by 1 n $\frac{1}{\sqrt{k}} = \frac{1}{\sqrt{k}} \leq \frac{9}{\sqrt{k}} \cdot \frac{1}{\sqrt{k}} = \frac{9}{\sqrt{k}} \cdot \frac{9}{\sqrt{k}}$

 $T \approx 3.1415926536$ Papproximation Arounded 3.14 < T < 3.142The famous rational approximation of T is $\frac{22}{7}$ (nextone is $\frac{355}{113}$) Exercise: Find the rational expression for $3.14141414... = 3.14 = \frac{P}{2}, P_{12} \in \mathcal{N}.$ Solve noing Geometric Series. $\begin{array}{rcl} & & & \\ 0.14 & = & \frac{1}{40} + \frac{4}{10^2} + \frac{1}{10^3} + \frac{4}{10^4} + \cdots & = & \frac{14}{10^4} + \frac{14}{10^4} + \cdots \\ & & = & \frac{14}{10} + \frac{4}{10^2} + \frac{1}{10^3} + \frac{4}{10^4} + \cdots \\ & & = & \frac{14}{10^2} + \frac{14}{10^2} \\ & & = & \frac{14}{10^2} + \frac{14}{1$

Based on $\sum_{n=0}^{\infty} ar^n = \frac{a}{1-r}$ for |r| < 1 $\begin{array}{rcl} \text{conclude} \\ 0.111 &= \frac{14}{10^2} & \frac{1}{1 - \frac{1}{10^2}} &= \frac{14}{10^2} & \frac{1}{\frac{99}{100}} \\ \end{array}$ we conclude add 3 $3 + \frac{14}{99} = \frac{297 + 14}{99} = \frac{311}{99}$ [Is this 22] better than $\frac{22}{79}$ Sometimes it is taught $0, d_1 d_2 \dots d_n = \frac{d_1 d_2 \dots d_n}{q q \dots q}$ Whay? G.S.

There is no math without Wlig? 2 1 2 n Harmonic Series_ n = 1Theorem Huflarmonic Series diverges. Study $H_n = \sum_{k=1}^{n} \frac{1}{k} = 1 + \frac{1}{2} + \dots + \frac{1}{n}, n \in \mathcal{N}$ A Harmonic numbers The sequence (1) Since $H_{n+1} - H_n = \frac{1}{n+1} > 0$ of Harmonic numbers is increasing.

The seguence of Harmonic unbers is mounded. (2)Pizza-Party Froon $1 + \frac{1}{2} = \frac{3}{2}$ $(1+\frac{1}{2})+(\frac{1}{3}+\frac{1}{4})$ Ŋ Ξ m=2 $\frac{4}{2} + \frac{4}{8} = \frac{5}{2}$ (1+1+1+ 5+67 $m=3 H_{g} = (1+\frac{1}{2}) + (\frac{1}{3} + \frac{1}{4})$

 $m \ge 1 \quad H_{2^m} = \left(1 + \frac{1}{2}\right) + \left(\frac{1}{3} + \frac{1}{4}\right) + \dots + \left(\frac{1}{2^{m-1}} + \frac{1}{2^{m-1}} + \frac{1}{2^{m \sum_{n} \left(\frac{1+1}{2} \right) + \frac{1}{2} + \cdots + \frac{1}{2} = \frac{3}{2} + \frac{m-1}{2}^{2^{m}}$ $\frac{2^2}{m-1 \text{ terms}} = \frac{m+2}{2}$ The sequence of Hn diverges since it is unbounded. Above we proved that $H_{2m} \ge \frac{m+2}{2} \frac{1}{2} \frac{1}$

Since 1=2°, 2', 4=22, 8=2', 16=24, ..., 2°, ... is an increasing sequence of positive integers the following statement holds: $\forall n \in \mathbb{N} \quad \exists m \in \mathbb{N} \cup \{0\} \text{ s.t. } 2^m \leq n < 2^{m+1}$ Since ln is an increasing function we have $2^{m} \leq n \leq 2^{m+n} \iff \ln(2^{m}) \leq \ln n \leq \ln(2^{m+n})$ $\implies m \ln 2 \leq \ln n < (m+n) \ln 2$ $(\text{since } \ln 2 > 0) \iff m \leq \frac{\ln n}{\ln 2} < m+1$ Hence $2^{m} \leq n < 2^{m+1} \iff m = \lfloor \frac{l_{m}n}{l_{m}2} \rfloor$ Since $\{H_{n}\}$ is an increasing sequence, we have

 $H_{n} \ge H_{2^{m}} \quad \text{with} \quad m = \left\lfloor \frac{\ln n}{\ln 2} \right\rfloor$ Since we proved $H_{2^{m}} \ge \frac{m+2}{2} \quad \text{we have that}$ $\begin{aligned} & \forall n \in \mathbb{N} \quad \overset{\cdot}{H}_n \geqslant \frac{1}{2} \left(\left\lfloor \frac{\ln n}{2} \right\rfloor + 2 \right) \\ & \text{This inequality shold allow us to answer the following} \\ & \text{guestion: Given } \mathcal{M} \in \mathbb{R}_+ = (0, +\infty), \text{ for which } n \in \mathbb{N} \end{aligned}$ we have $H_n \ge M$? The easiest way to solve this is to solve for mENULOY such that $\frac{m+2}{2} = TMT \ge M$ Then m = 2[M] - 2 = 2(IM] - 1).

Then we know that $H_{2^{2(IMI-1)}} \geq \frac{2(IMI-1)+2}{2} = IMI.$ In general, for $\forall n \in \mathcal{N}$ such that $n \ge 2^{2(IMI-1)}$ we have H > M > M. This shows that the Harmonic Sequence is not bounded.

 $\frac{\text{Exercise}}{\underset{H_{int}}{\overset{\infty}{\longrightarrow}}} \frac{\text{Prove that the infinite series}}{\text{diverges}}.$ $\frac{1}{H_n}$ n = 1