Infinite Series

- Geometric Series
- Harmonic Series
- Telescopic Series

Given a sequence $\left\{a_{n}\right\}$ (or $\left.a=\mathbb{N} \rightarrow \underset{\infty}{\mathbb{R}}\right)$ the expression $a_{1}+a_{2}+\cdots+a_{n}+\cdots=\sum_{k=1}^{\infty} a_{k}$ is called an infinite series.
The basic question is wheter $\sum_{k=1}^{\infty} a_{k}$ converges or diverges. What this asks is whether the sequence of partial sums

$$
\underbrace{S_{n}}_{n}=\sum_{k=1}^{n} a_{k} \quad \begin{gathered}
\text { converges on } \\
\text { diverges. }
\end{gathered}
$$

n-th partial sum
The most important example is the GOMETRIC SERIES

The terms of a geometric series are ($a \in \mathbb{R}, r \in \mathbb{R}$) $a, a r, a r^{2}, a r^{3}, \ldots, a r^{n-1}, a r^{n}, a r^{n+1}, \ldots$
G.S is $\sum_{k=0}^{\infty} a r^{k}$

We proved on Friday

$$
\begin{aligned}
& \text { We proved on Friday } \\
& \qquad S_{n}=\sum_{k=0}^{n} a r^{k}=a \frac{1-r^{n+1}}{1-r} \\
& \text { Therefore } \left.\left.\lim _{n \rightarrow \infty} S_{n}=\frac{a}{1-r} \right\rvert\, \text { mooned } r \neq 1\right)
\end{aligned}
$$

If $|r| \begin{gathered}n \neq 0 \\ a \neq \infty \\ \\ \sum_{k=0}^{\infty} a r^{k}\end{gathered}$

$$
\begin{gathered}
O . d_{1} d_{2} d_{3} d_{4} \cdots d_{n} \cdots \text { Where } d_{n} \in\{0,1, \ldots, g\} \\
\text { digit digit } \quad \text { The meaning of the } \\
\text { dis the following }
\end{gathered}
$$

decimal expansion is ic fact the following INFINITE SERIES:

$$
\sum_{n=1}^{\infty} \frac{d_{n}}{10^{n}}
$$

A big question is: Why does this series converge? the answer
is: The Monotone convergence Thu!
Set $S_{n}=\sum_{k=1}^{n} \frac{d_{k}}{10^{k}} \quad \forall n \in \mathbb{N}$
Then (1) $S_{n}^{k=1}$ is Non decreasing
$\forall n \in \mathbb{N} S_{n+1}-S_{n}=\frac{d_{n+1} \in 20,1, \ldots, \ldots}{10^{n+1}} \geqslant 0$
therefore $S_{n} \leqslant S_{n+1}^{10^{n+1}} \forall n \in X$
(2) The sequence $\left\{S_{u}\right\}$ is bold above by 1 $\forall k \in \mathbb{N} \frac{d_{k}}{10^{k}} \leqslant \frac{9}{10^{2}}$. Therefore $S_{n} \leqslant \sum_{k=1}^{n} \frac{9}{11^{k}}$

Now calculate $\sum_{k=1}^{n} \frac{9}{10^{k}}=\frac{9}{10} \sum_{k=1}^{n} \frac{1}{10^{k-1}}=$

$$
\begin{aligned}
& \begin{aligned}
\sum_{k=1} 10^{k} & \frac{\overrightarrow{10}}{} \sum_{k=1}^{10^{k}} \\
& =\frac{9}{10} \sum_{k=0}^{n-1} \frac{1}{10^{k}}=\frac{9}{10} \frac{1-\frac{1}{10 n}}{1-\frac{1}{10}} \\
& \leqslant \frac{9}{10} \frac{1}{\frac{9}{10}}=1
\end{aligned} \\
& \text { Thus } \begin{array}{l}
S_{n}=\sum_{k=1}^{n} \frac{d_{k}}{10^{k}} \leqslant 1 \\
\sum_{n=1}^{\infty} \frac{d_{n}}{10^{n}} \text { converges } t_{0}=1
\end{array}
\end{aligned}
$$

$\pi \approx 3.1415926536$

$$
\$_{\text {pounded }}^{36} \frac{3.14<\pi<3.142}{\text { proximation of } \pi \text { is } \frac{22}{7}}
$$

The fanions rational approximation of $I I$ is $\frac{22}{7}$ (vextone is $\frac{355}{113}$)
Exercise: Find the rational expression for

$$
\begin{aligned}
& \text { Exercise: Find the rancour } \\
& 3.14141414 \ldots=3 . \overline{14}=\frac{p}{2}, p, q \in \mathbb{N} . \\
& \text { Semiotic Series. }
\end{aligned}
$$

Solve using Geometric Series.

$$
\begin{gathered}
0.14=\frac{1}{10}+\frac{4}{10^{2}}+\frac{1}{10^{3}}+\frac{4}{10^{4}}+\cdots=\frac{14}{10^{2}}+\frac{14}{10^{4}}+\cdots \\
\left.=\sum_{k=1}^{\infty} \frac{14}{\left(10^{2}\right)^{k}}=\sum_{k=1}^{\infty} 1 \frac{1}{10^{2}}\right)^{k}=\sum_{k=1}^{10^{2}}\left(\frac{1}{10^{2}}\right)^{k-1} \\
=\sum_{n=0}^{\infty} \frac{14}{10^{2}}\left(\frac{1}{10^{2}}\right)^{n} \stackrel{G s}{=} .
\end{gathered}
$$

Based on $\quad \sum_{n=0}^{\infty} a r^{n}=\frac{a}{1-r}$ for $\mid r k<1$ we conclude

$$
\begin{aligned}
& \text { we conclude } \\
& \begin{aligned}
& 0.14=\frac{14}{10^{2}} \frac{1}{1-\frac{1}{10^{2}}}=\frac{14}{10^{2}} \frac{1}{\frac{99}{100}}= \\
&=\frac{14}{99} \\
& \text { add 3}
\end{aligned}
\end{aligned}
$$

$$
3+\frac{14}{99}=\frac{297+14}{99}=\frac{311}{99} \text { Is this } \begin{aligned}
& \text { Inter than } \\
& \text { ben }
\end{aligned}
$$

better than $\frac{22}{7}$?
Sometimes it is taught t
O. $d_{1} d_{2} \ldots d_{n}=\frac{d_{1} d_{2} \ldots d_{n}}{q q \cdots q}$ Way? G.S.

There is no math without Why?
Harmonic Series $\sum_{n=1}^{\infty} \frac{1}{n}$
Theorem thitlarmonic Series diverges.
Study $\left.H_{n}=\sum_{k=1}^{n} \frac{1}{k}=1+\frac{1}{2}+\cdots+\frac{1}{n}, n \in \notin\right)$
A Harmonic numbers the sequence
(1) Since $H_{n+1}-H_{n}=\frac{1}{n+1}>0 \begin{aligned} & \text { of Hanwwic } \\ & \text { numbers }\end{aligned}$ is numbers
increasing.
(2) The sequence of Harmonic unubers is umbounded.
Proof. (Pizza-Party)

$$
\begin{aligned}
& H_{1}=1 \\
& H_{2}=1+\frac{1}{2}=\frac{3}{2} \\
& H_{3} \\
& m=2 \quad H_{4}=\left(1+\frac{1}{2}\right)+\left(\frac{1}{3}+\frac{1}{4}\right) \geqslant \frac{3}{2}+\frac{1}{4}+\frac{1}{4}=\frac{3}{2}+\frac{1}{2}=\frac{4}{2} \\
& \vdots \\
& m=3 H_{8}
\end{aligned}=\underbrace{\left(1+\frac{1}{2}\right)+\left(\frac{1}{3}+\frac{1}{4}\right)}_{H_{4}}+\left(\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}\right) \geqslant \frac{4}{2}+\frac{4}{8}=\frac{5}{2} .
$$

$$
\begin{aligned}
& m \geqslant 1 \quad H_{2^{m}}=\left(1+\frac{1}{2}\right)+\left(\frac{1}{3}+\frac{1}{4}\right)+\cdots+\left(\frac{1}{2^{m-1}+1}+\frac{1}{2^{m}+2}+\cdots+\frac{1}{2^{m+1}+2^{m}}\right) \\
& \geqslant\left(1+\frac{1}{2}\right)+\underbrace{\frac{1}{2}+\cdots+\frac{1}{2}=\frac{3}{2}+\frac{m-1}{2} 2^{m}} \\
& \cdots \underbrace{2^{m}}_{m-1 \text { terms }}=\frac{m+2}{2}
\end{aligned}
$$

The sequence of H_{n} diverges since it is unbounded.
Above we proved that $H_{2^{m}} \geqslant \frac{m+2}{2} \forall_{m} \in \mathbb{N}$

Since $1=2^{\circ}, 2^{\circ}, 4=2^{2}, 8=2^{3}, 16=2^{4}$, increasing sequence of positive integers' the following statemath had s. $\forall n \in \mathbb{N} \exists m \in \mathbb{N} \cup\{0\}$ sit. $2^{m} \leq n<2^{m+1}$ Since \ln is an increasing function we have

$$
\begin{aligned}
& \text { un } \text { is an increasing finchon we nave } \\
& 2^{m} \leqslant n<2^{m+1} \Leftrightarrow \ln \left(2^{m}\right) \leqslant \ln n<\ln \left(2^{m+1}\right) \\
& \Leftrightarrow m \ln 2 \leq \ln n<(m+1) \ln 2 \\
&(\text { since } \ln 2>0) \Leftrightarrow m \leqslant \frac{\ln n}{\ln 2}<m+1 \\
& \ln n 1
\end{aligned}
$$

Hence $2^{m} \leqslant n<2^{m+1} \Leftrightarrow m=\left\lfloor\frac{\ln n}{\ln 2}\right\rfloor$
Since $\left\{H_{n}\right\}$ is an increasing sequence, we have

$$
H_{n} \geqslant H_{2^{m}} \text {, with } m=\left\lfloor\frac{\ln n}{\ln 2}\right\rfloor
$$

Since we proved $H_{2} m \geqslant \frac{m+2}{2}$ we have that $\forall_{n \in \mathbb{N}} \quad H_{n} \geqslant \frac{1}{2}\left(\left\lfloor\frac{\ln n}{2}\right\rfloor+2\right)$.
This inequality shold allow us to answer the foltronigg question: Given $M \in \mathbb{R}_{+}=(0,+\infty)$, for which $n \in x$ we have $H_{n} \geqslant M$?

The easiest way to solve this is to solve for $m \in \mathbb{N} \cup\{0\}$ such that $\frac{m+2}{2}=\lceil M \mid \geqslant M$ Then $m=2[M]-2=2([m]-1)$.

Then we know that

$$
\begin{aligned}
& \text { we know that } \\
& H_{2^{2(M T-1)}} \geqslant \frac{2(m T-1)+2}{2}=\lceil M \mid
\end{aligned}
$$

In general, for $\forall n \in \mathbb{N}$ such that $n \geqslant 2^{2([M]-1)}$ we have

$$
H_{n} \geqslant[M] \geqslant M
$$

This shows that the Harmonic Sequence is not bounded.

Exercise Prove that the infinite Series $\sum_{n=1}^{\infty} \frac{1}{H_{n}}$ diverges.

