Telescopic Series and the Basic Properties of Infinite Series
(*) So far we talked abou Geometric Series $\left(\sum_{n=0}^{\infty} a r^{n} \Rightarrow\right.$ converges if $|\Gamma|<1$ its simenges $a \neq 0$ and $|r| \geqslant 1$ a $)$

* Harmonic Series: $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges.

Harmonic umukers: $H_{n}=\sum_{k=0}^{n} \frac{1}{k}$, we proved

$$
\begin{aligned}
& \text { Harmonic numbers: } H_{n}=\sum_{k=0} \bar{k} \text {, we pron } \quad H_{2^{m}} \geqslant \frac{m+2}{2} \cdot\left\{\begin{array}{l}
\text { The sequence of } \\
\text { Harmonic uni } \\
\text { is unbounded. }
\end{array}\right. \\
& H_{m \in \mathbb{N}} \text { (This is more like a method }
\end{aligned}
$$

(*)Telescopic Series (This is more like a method that comes useful in many problems.)

Telescoping

Now I will use this telescoping idea to rove that $\sum_{k=1}^{\infty} \frac{1}{k^{2}}$ Converges.
If $x>1$, then $\frac{1}{(x-1) x}=\frac{1}{x-1}-\frac{1}{x}\left(=\frac{x-(x-1)}{(x-1) x}\right)$
(yon might have seen this in Math 125 as a method to find rudefinite integrals. (partial fractions))

$$
\text { Lind rudefinte integrals . } \frac{1}{\text { Let } k>1 . ~} \frac{1}{k^{2}} \leqslant \frac{1}{\operatorname{pin} 2 a^{(k-1) k}-\operatorname{Party}}=\frac{1}{k-1}-\frac{1}{k}
$$

Let $n>1$ and calculate

$$
\begin{aligned}
& S_{n}=\frac{1}{1}+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\cdots+\frac{1}{(n-1)^{2}}+\frac{1}{n^{2}} \leqslant \\
& \\
& \leqslant \frac{1}{1}+\frac{1}{1 \cdot 2}+\frac{1}{2 \cdot 3}+\cdots+\frac{1}{(n-2)(n-1)}+\frac{1}{(n-1) n} \\
& \\
& =\frac{1}{1}+\left(1-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{5}\right)+\left(-+\left(\frac{1}{n \cdot-2}-\frac{1}{n}\right)+\left(\frac{1}{n-1}-\frac{1}{n}\right)\right. \\
& \\
& =1+1-\frac{1}{n} \leqslant 2+n>1
\end{aligned}
$$

We proved that

$$
\forall n \in \mathbb{N} \quad S_{n}=\sum_{k=1}^{n} \frac{1}{k^{2}} \leqslant 2
$$

Clearly $\left\{S_{n}\right\}$ is an increasing sequence since $S_{n+1}-S_{n}=\frac{1}{(n+1)^{2}}>0$.
By M CT the sequence $\left\{S_{n}\right\}$ comergis
Hus the series $\sum_{k=1}^{\infty} \frac{1}{k^{2}}$ Converges we used a similes trick to grove that $\sum_{k=0} \frac{1}{k!}$
what is the rum of this series?

Eulor named finding the sum of this Series Basel Problem

$$
\nabla \sum_{k=1}^{\infty} \frac{1}{k^{2}}=\frac{\pi^{2}}{6}
$$

I hope that after Years of trying I wrote
YOV can unhouse
Phase google Basel Problem
Contrast to $\sum_{k=1}^{\infty} \frac{1}{k^{0}}$ DIVERGES

In general we might want to know for which $p \in \mathbb{R}$ the series

$$
\sum_{n=1}^{\infty} \frac{1}{n^{p}} \text { CONVERGES }
$$

So far we know $p=1$ Diverges $p=2$ Converges.

- diverges Sone of this can be explained
- converges by the fact that $\frac{1}{n^{p}}$ is decreasing
dur oo p

$$
\frac{1}{n}>\frac{1}{n^{2}}
$$

This properly of an infinite series is called the DIVERGENCE TEST
Theorem Let $\sum a_{n}$ be an rifinite series. If $\sum_{n=1}^{\infty} a_{n}$ converges, than $\lim _{n \rightarrow \infty} a_{n}=0$.

The contrapositive of the preceding implication is "more" useful:
If the sequence $\left\{a_{n}\right\}$ does not converge to 0 , then the series $\sum a_{n}$ diverges.
Proof. Assume $\sum_{n} a_{n}$ converges. Set $\forall n \in \mathbb{X} S_{n}=\sum_{k=1}^{n} a_{k}$. Since $\sum a_{n}$ converges, $\lim _{n \rightarrow+\infty} S_{n}=L$ for force $L \in \mathbb{R}$. We can prove as an exercise that
$\lim _{n \rightarrow+\infty} S_{n-1}=L \cdot$ Recall
$\forall n \in \mathbb{N}$

$$
S_{n}-S_{n-1}=a_{n}
$$

Use the algebra of limits to calculate

$$
\begin{aligned}
& \text { Ese the algebra of tiunts to } \\
& \lim _{n \rightarrow+\infty} a_{n}=\lim _{n \rightarrow+\infty}\left(S_{n}-S_{n-1}\right)=L-L=0
\end{aligned}
$$

(I should prove this with $\varepsilon-N(\varepsilon)$ from
the definition?
Exercise $3.24(d) \sum_{n=1}^{\infty} \frac{e^{n+3}}{\pi^{n-1}}$

This might be a Geountui Series!
How do I chech that

$$
\begin{aligned}
& \operatorname{ar}^{n-1}, a r^{n}, \underbrace{a r^{n+1}}_{n \times 1 / \text { merions }} \ldots \\
& \begin{array}{l}
\frac{e^{n+1}}{\pi^{n-1}}, \frac{e^{n+2}}{\pi_{\text {mext }}^{n}}, \frac{\text { next }}{\text { next }}=\text { constait } \sigma \\
\frac{e^{n+2}}{\frac{e^{n+2}}{\pi^{n}}} \\
\frac{e^{n+1}}{\pi^{n-1}}
\end{array} \\
& =\frac{e}{\pi} \text { (Hhis is r., Since } \frac{e}{c}<1 \text { this } \frac{\left.L_{\text {series }} \text { converges. }\right)}{\text { Siuplify }}
\end{aligned}
$$

