Tests for
Convergence of Infinite Series

Direct Comparison Test:
Assume $a_{n}, b_{n}>0 \quad \forall n \in \mathbb{N}$ and

$$
a_{n} \leqslant b_{n} \quad \forall n \in X_{0} .
$$

If $\sum b_{n}$ converges, then $\sum a_{n}$ converges.
Limit Comparison Test

Assume $a_{n}, b_{n}>0 \quad \forall_{n} \in \mathbb{N}$ and $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=L$, where $L \in \mathbb{R}$. If $\sum_{n=1}^{\infty} b_{n}$ converges, then $\sum_{n=1}^{\infty} a_{n}$ comorges,
More important Jest is the Integral Test:

Let $f:[1,+\infty) \rightarrow \mathbb{R}_{+}$be a contimons function Let $a_{n}=f(n) \forall n \in \mathbb{N}$.
$\int_{1}^{\infty} f(x) d x$ converges if and only if $\sum_{n=1}^{\infty} a_{n}$ converges
Comment about improper integrals:
$\int_{1}^{+\infty} f(x) d x$ is called on improper witegral.
$x \geqslant 1 \quad \int_{1}^{1} f(x) d x$ definite integral

The improper integral $\int^{\infty} f(x) d x$ is the limit
Math 125 ?

$$
\frac{\ln 125}{\lim _{X \rightarrow+\infty}} \int_{1}^{X} f(x) d x=\int_{1}^{\infty} \int_{1}^{\infty} f(x) d x
$$

his is just a hider

For us, it will be inupritent to calculat $\int_{1}^{\infty} \frac{1}{x^{p}} d x \quad p \in \mathbb{R} \quad p>1$.
$\int_{1}^{\infty} \frac{1}{x^{3 / 2}} d x$, first we have calculate the Fundamental $\int_{1}^{X} \frac{1}{x^{3 / 2}} d x$. use the Fundamental Theorem of Calculus.

$$
\begin{aligned}
& \int \frac{1}{x^{3 / 2}} d x=\int x^{-3 / 2} d x=-2 x^{-1 / 2} \\
& \left(x^{\alpha}\right)^{\prime}=\alpha x^{\alpha-1} \\
& \quad\left(-2 x^{-1 / 2}\right)^{\prime}=x^{-3 / 2} \\
& \int_{1}^{x} \frac{1}{x^{3 / 2}} d x=\left.\left(-2 \frac{1}{\sqrt{x}}\right)\right|_{1} ^{X}=-2 \frac{1}{\sqrt{x}}+2
\end{aligned}
$$

Noor take $\lim _{X \rightarrow+\infty}(2-\underbrace{\left.\lim _{\substack{1 \\ \sqrt{x}}}\right)=2}_{\begin{array}{c}\text { snall } \\ \text { large } x\end{array}}$

What we proved is $\int_{\text {we prefer }}^{\infty} \frac{1}{x^{3 / 2}} d x=\sum^{\text {converges }}$

$$
\begin{aligned}
& 1+\frac{1}{2^{3 / 2}}+\frac{1}{3^{3 / 2}}+\frac{1}{4^{3 / 2}}+\cdots+\frac{1}{n^{3 / 2}}<2 \\
& \sum_{k=1}^{n} \frac{1}{k^{3 / 2}}<2
\end{aligned}
$$

bounded by 2 increasing Aust converge. ${ }^{\text {D }}$ Thus we proved that $\sum \frac{\infty}{1}$ Converges

We can use the nittegral test to prove that $\sum_{n=1}^{\infty} \frac{1}{n^{p}}$ converges for every $p>1$.

$$
\left.\int_{1}^{x^{p}} d x \frac{F T C}{\frac{p}{p}} \frac{1}{1-p} x^{1-p}\right|_{1} ^{n=1}=\frac{1}{1-p}\left(x^{n-p}-1\right)=1
$$

$$
\int \frac{1}{x^{p}} d x=\int x^{-p} d x=\frac{1}{1-p} x^{-p+1}
$$

antiderinative derivative

$$
\begin{aligned}
& \delta=\frac{1}{1-p}\left(\frac{1}{x^{p-1} \rightarrow 0}-1\right)=\frac{1}{p-1} \\
& \lim _{x \rightarrow+\infty} \frac{1}{x^{p-1} \rightarrow 0}=O \text { (proof by def) } \\
& T \operatorname{lins} \int_{1} \frac{1}{x^{p}} d x=\frac{1}{p-1}{ }_{p=3 / 2}^{+\infty}
\end{aligned}
$$

Therefore, based on the picture,

$$
\sum_{k=1}^{n} \frac{1}{k^{p}}<\frac{1}{p-1}
$$

Therefore by MCT

$$
\sum_{k=1}^{\infty} \frac{1}{k^{p}} \frac{\text { comperes }}{\text { Whenever }(p>)}
$$

Remember $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges.
Put this info on the p-axis: σ

We know convergence for each one of them.

