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Harmonic series

Amazingly , or maybe
not so aueasiugg

the Alternating Harmonic
Series

converges . Here is why :
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To verify convergence we
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Look at the PARTIAL SAMs
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Instead of In ice the AHS
,
we could

use any sequence
an sit . an > o an > out ,
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Alternating Series Test
:

Assume ① an - o
threw

② an > ants
threw

③ fgigan=o
Then II. Gift ' an CONVERGES



Now comes an amazing fact
about AlternatingHarmonic

Series
.

You can think of an infinite
series as balancing an infinite

check!
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In the notes the gum changes to

E⑨
Therefore Convergent series
with

"Infinite
"
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and
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are



Called

CONDITIONALLY
CONVERGENT


