Absolute
vs. Conditional Convergence of Infinite Series

Alternating Series Test
If the following three conditions are satisfied:
(1) $\forall n \in \mathbb{N} \quad a_{n}>0$
(2) $\forall n \in \mathbb{N} \quad a_{n+1} \leq a_{n}$
(3) $\lim _{n \rightarrow+\infty} a_{n}=0$,

Then $\sum_{n=1}^{n \rightarrow+\infty}(-1)^{n+1} a_{n}$ CONVERGES

The most importand Example is the Alternating Harmonis Series

$$
\underbrace{\sum_{n=1}^{\infty}(-1)^{n+1} \frac{1}{n}}_{=\ln 2}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+\ldots .
$$

Think of this series as balancing a check book with infinite number of transactions. Total deposits $\sum_{n=1}^{\infty} \frac{1}{2 n-1}$ total withdrawals $\sum_{n=1}^{\infty} \frac{1}{2 n}$
divergent severs ${ }^{\$}$
Total activity in this account is

$$
\sum_{n=1}^{\infty}\left|(-1)^{n+1} \frac{1}{n}\right|=\sum_{n=1}^{\infty} \frac{1}{n} \begin{gathered}
\text { harmonic } \\
\text { series } \\
\text { diverges }
\end{gathered}
$$

Since infinite r amount is coming in we can start "spending more" earlier:

$$
\begin{aligned}
& e \text { can start prouding more } \\
& 1-\frac{1}{2}-\frac{1}{4}+\frac{1}{3}-\frac{1}{6}-\frac{1}{8}+\frac{1}{5}-\underbrace{\frac{1}{10}-\frac{1}{12}}_{b_{5}}+\cdots . . \\
& b_{1} \underline{b_{2}} \underline{b}_{3} \\
& \underline{b_{8}} b_{9}
\end{aligned}
$$

$$
\begin{aligned}
& b_{3 k-2}=\frac{1}{2 k-1} \\
& b_{3 k-1}=\frac{1}{4 k-2} \\
& b_{3 k}=\frac{1}{4 k}
\end{aligned}
$$

exactlyy $2 n$ withdrawals

$$
=\frac{1}{2}-\frac{1}{4}+\frac{1}{6}-\frac{1}{8}+\frac{1}{10}-\frac{1}{12}+\cdots+\frac{1}{4 n-2}-\frac{1}{4 n}
$$

$$
S_{3 n}=\frac{1}{2}(\underbrace{1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+\cdots+\frac{1}{2 n-1}-\frac{1}{2 n}})
$$

Exactly the 2nth-portial sum of the Alternating Harmonic Series $\overrightarrow{\text { converges }} \boldsymbol{\operatorname { l n }} \ln 2$

$$
S_{3 n} \rightarrow \sum_{2}^{1} \ln 2 \quad(n \rightarrow+\infty)
$$

$S_{3 n-1}$
$S_{3 n-2}$

An amazing fact is that we can A reorder the terms of the AHS to converge to any number.
Hoo to do that? $\sum_{n=1}^{\infty} \frac{1}{2 n-1}=1+\frac{1}{3}+\frac{1}{5}+\cdots=$ spend

This is called CONDITIONAL CONVERGENCE

Formal Definition: An infinite series $\sum_{n=1}^{\infty} b_{n}$ is called CONDITIONALS Y CONVERGENT if $\sum_{n=1}^{\infty}\left|b_{n}\right|$ diverges. If $\sum_{n=1}^{\infty}\left|b_{n}\right| \quad$ CONVERGES then the series $\sum_{n=1}^{\infty} b_{n}$ is called ABSOLUTELY ${ }^{n=1}$ CONVERGENT.

An example of absolutely convergent Series is

$$
\sum_{n=1}^{\infty}(-1)^{n+1} \frac{1}{n^{2}}=1-\frac{1}{2^{2}}+\frac{1}{3^{2}}-\frac{1}{4^{2}}+\frac{1}{5^{2}} \cdots
$$

We proved $\sum_{n=1}^{\infty}\left|(-1)^{n+1} \frac{1}{n^{2}}\right|=\sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{\pi^{2}}{6}$
How much has been with drawn from this account?

$$
\sum_{n=1}^{\infty} \frac{1}{(2 n)^{2}}=\sum_{n=1}^{\infty} \frac{1}{4 n^{2}}=\frac{1}{4} \sum_{n=1}^{\infty} \frac{1}{n^{2}}=\underbrace{\frac{1}{4} \frac{\pi^{2}}{6}}
$$

total deposited $\pi^{2} / 6$.
Thus the balance is $\frac{\pi^{2}}{6}-\frac{1}{4} \frac{\pi^{2}}{6}=\frac{3}{4} \frac{\pi^{2}}{6}=\frac{\pi^{2}}{8}$
The sum n $\sum_{n=1}^{\infty}(-1)^{n+1} \frac{1}{n^{2}}=\frac{\pi^{2}}{8}$
Theorem If a series converges absolutely then it converges.
that is

$$
\underbrace{\sum_{n=1}^{\infty}\left|b_{n}\right| \text { CONVERGES }}_{\text {absolute convergence }} \Rightarrow \underbrace{\sum_{n=1}^{\infty} b_{n} \operatorname{CONVERR} \underbrace{}_{\beta}}_{\text {convergence }}
$$

Proof. Absolute Value is an iuppritant

This is an interplays $|x|$ and x

$$
\begin{aligned}
& |x|_{+}=\frac{1}{2}(|x|+x) \\
& |x|_{-}=\frac{1}{2}(|x|-x)
\end{aligned}
$$

$$
\begin{aligned}
& |x|_{+}+|x|_{-}=|x| \\
& |x|_{+}-|x|_{-}=x
\end{aligned}
$$

Basicly from $|x|$, and $|x|$ - you can build both x and $|x|$. Also σ

$$
|x|_{+} \leq|x| \text { and }|x|_{-} \leq|x|
$$

