Power of the Infinite Series. Proof of Euler's Identity
$\frac{72}{92}=\frac{18}{23}$ fraction in decinuil number system
in hex $18=1 * 16+2 * 16^{\circ}$ in hex 12

$$
\begin{aligned}
& \left(\frac{18}{23}\right)_{\text {hex }}=\frac{12}{17} \\
& \frac{1}{2}=0.5\left(\frac{1}{2}\right)_{\text {hex }}=\frac{1}{2} 0 \cdot 8 \\
& \frac{1}{2}=h_{1} * \frac{1}{16} \\
& \left.\frac{1}{3}=h_{1} \frac{1}{16}+h_{2} \frac{1}{16^{2}}+h_{3} \frac{1}{16^{3}}+\cdots=\sum_{k, 1, \ldots 1}\right\}
\end{aligned}
$$

How can I open nay wind?
$\frac{1}{7}=0.1428 \ldots$ until it repeats.
Euler's Identity
$x^{2}=-1$ does not have a toll. in \mathbb{R}
We introduce a new "umber" called imaginarymnit

$$
i=\sqrt{-1}
$$

All numbers of the form $a+i b$ with $a, b \in \mathbb{R}$ are called COMLEX NUMBERS.
Notation is the set of all complex mab. Addition, ult- division is defined as

$$
\begin{aligned}
& (a+i b)+(c+i d)=a+c+i(b+d) \\
& (a+i b)(c+i d)=(a c-b d)+i(a d+b c) \\
& i^{2}=-1
\end{aligned}
$$

A rumarhahle fact is

$$
\begin{aligned}
& \text { A rumarhable fact is } \\
& (a+i b)(\underbrace{a-i b)}_{\text {corringate of } a+i b}=\underbrace{a^{2}+b^{2}} \in \mathbb{R}_{+} \cup\{0\}
\end{aligned}
$$

coryingate of $a+i b$

$$
\frac{a+i b}{c+i d}=\frac{\frac{\text { coryngate of }}{(a+i b)(c-i d)}}{(c+i d)(c-i d)}=\frac{(a+i b)(c-i d)}{\underbrace{2}_{\in+}+d^{2}}
$$

This mistery is resobved by Euler's Identity

$$
\begin{aligned}
& \forall x \in \mathbb{R} \\
& \forall \theta \in \mathbb{R} e^{i \theta}=\underbrace{\cos x}_{\in \mathbb{R}}+i \underbrace{\sin x}_{\in \mathbb{R}} \\
& \cos \theta+i \sin \theta
\end{aligned}
$$

The idea is to "cowert" e^{α} to
multiplication and addition.

$$
\begin{aligned}
& Q=\sum_{n=0}^{\infty} \frac{1}{n!} \\
& \forall x \in \mathbb{R} e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!} \\
& \underset{\substack{x \rightarrow 2 \theta \\
\text { replace } \notin \mathbb{R}}}{\infty} e^{i \theta}=\sum_{n=0}^{\infty} \frac{(i \theta)^{n}}{n!}
\end{aligned}
$$

$$
\begin{aligned}
n \in \operatorname{LOUN} N,(i \theta)^{n} & =i^{n} \theta^{n} \\
\hline i^{0} & =1 \\
i^{3} & =1 \\
i^{2} & =-1 \\
i^{3} & =i^{2} \cdot i=-i \\
i^{4} & =(-i) \cdot i=-i^{2}=1
\end{aligned}
$$

dichotony
n even, $n=2 k, k \in\{0\} \cup N$

$$
\begin{aligned}
& i^{n}=i^{2 k}=\left(i^{2}\right)^{k}=(-1)^{k} \\
& i^{n} \text { is } R E A L
\end{aligned}
$$

n odd, $n=2 k+1, k \in \mathbb{X} \cup\{0\}$

$$
\begin{aligned}
& i^{n}=i^{(2 k+1)}=i^{2 k} \cdot i=\underbrace{(-1)^{k}} i \\
& e^{i \theta}=\sum_{n=0}^{\infty} \frac{i^{n} \theta^{n}}{n!} \\
& =\sum_{k=0}^{\infty} \frac{(i)^{2 k} \theta^{2 k}}{(2 k)!}+\sum_{k=0}^{\infty} \frac{\substack{\text { tom } \\
\infty=0}}{(i)^{2 k+1} \theta^{2 k+1}} \frac{(2 k+1)!}{\infty}
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{k=0}^{\infty} \frac{(-1)^{k}}{(2 k)!} \theta^{2 k}+\sum_{k=0}^{\infty} \frac{i(-1)^{k}}{(2 k+1)!} \theta^{2 k+1} \\
& =\underbrace{\text { an inpivite series }}_{\sum_{k=0}^{\infty} \frac{(-1)^{k}}{(2 k)!} \theta^{2 k}+2^{0} \sum_{k=0}^{\infty} \frac{(-1)^{k}}{(2 k+1)!} \theta^{2 k+1}} \begin{array}{c}
\in \mathbb{R} \leftrightarrow W V_{0} \rightarrow \in \mathbb{R} \\
\cos \theta \quad \sin \theta
\end{array}
\end{aligned}
$$

What is the sum of

$$
\begin{aligned}
& \sum_{k=0}^{\infty} \frac{(-1)^{k}}{(2 k)!} x^{2 k}=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\cdots \\
& \sum_{k=0}^{\infty} \frac{(-1)^{k}}{(2 k+1)!} x^{2 k+1}=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\cdots,
\end{aligned}
$$

Lemma Let $g: \mathbb{R} \rightarrow \mathbb{R}$. continuous
Assume $\exists M \in \mathbb{R}_{+}$and $m \in\{0\} \cup N$ such that
$\forall x \in \mathbb{R}$

$$
|g(x)| \leqslant M|x|^{m} \cdot v
$$

Then

$$
\begin{aligned}
& |g(x)| \leqslant M|x|^{m} \cdot \psi^{\mid x x^{3}} \\
& \left|\int_{0}^{x} g(t) d t\right| \leqslant \frac{M}{m+1}|x|^{m+1}
\end{aligned}
$$

Proof \rightarrow Tomorrow

Background Knowledge:

$$
\begin{aligned}
& \int_{0}^{x} \sin t d t=\left.(-\cos t)\right|_{0} ^{x}=1-\cos x \\
& \int_{0}^{x} \cos t d t=\left.(\sin t)\right|_{0} ^{x}=\sin x
\end{aligned}
$$

