On minimums and maximums

Branko Ćurgus

October 13, 2020

Definition 1. Let A and B be two sets. We say that A is a *subset* of B, and write $A \subseteq B$, if and only if for every $x \in A$ we have $x \in B$. In notation

$$A \subseteq B \qquad \Leftrightarrow \qquad \forall x \ (x \in A \Rightarrow x \in B), \tag{1}$$

Definition 2. Let S be a subset of \mathbb{R} . If u is the smallest number in S, then u is called a *minimum* of S and we write $u = \min S$. If v is the greatest number in S, then v is called a *maximum* of S and we write $v = \max S$. More formally, we express these definitions as logical statements:

$$u = \min S \qquad \Leftrightarrow \qquad (u \in S) \land (\forall x \in S \ u \le x), \tag{2}$$

$$v = \max S \qquad \Leftrightarrow \qquad (v \in S) \land (\forall x \in S \ x \le v). \tag{3}$$

Proposition 3. Let A and B be nonempty subsets of \mathbb{R} such that $A \subseteq B$. The following statements hold.

(i) If the sets A and B have minimums, then

$$\min B \le \min A. \tag{4}$$

(ii) If the sets A and B have maximums, then

$$\max A \le \max B. \tag{5}$$

Proof. Assume A and B be nonempty subsets of \mathbb{R} such that $A \subseteq B$.

(i) Assume that A and B have minimums and set $a = \min A$ and $b = \min B$. By definition of the minimum, see \Rightarrow in (2), we have $a \in A$. By definition of the subset, see \Rightarrow in (1), $a \in A$ implies $a \in B$. Hence $a \in B$ holds. Since $b = \min B$, by definition of the minimum, see \Rightarrow in (2), we have that $b \leq y$ for all $y \in B$. Since we already proved that $a \in B$, we conclude that $b \leq a$. This proves (4).

(ii) Assume that A and B have maximums and set $c = \max A$ and $d = \max B$. By definition of the maximum, see \Rightarrow in (3), we have $c \in A$. By definition of the subset, see \Rightarrow in (1), we deduce that $c \in B$. Since $d = \max B$, by definition of the maximum, see \Rightarrow in (3), we have that $y \leq d$ for all $y \in B$. Since we already proved that $c \in B$, we conclude that $c \leq d$. This proves (5). **Definition 4.** Let A and B be nonempty subsets of \mathbb{R} . We define the sum A + B to be the following set

$$A + B = \left\{ x + y \in \mathbb{R} : (x \in A) \land (y \in B) \right\}.$$
(6)

Proposition 5. Let A and B be nonempty subsets of \mathbb{R} . The following statements hold.

(i) If the sets A and B have minimums, then

$$\min(A+B) = \min A + \min B. \tag{7}$$

(ii) If the sets A and B have maximums, then

$$\max(A+B) = \max A + \max B. \tag{8}$$

Proof. Assume A and B be nonempty subsets of \mathbb{R} .

(i) Assume that A and B have minimums and set $a = \min A$ and $b = \min B$. By definition of the minimum, see \Rightarrow in (2), we have that $a \in A$ and $b \in B$. By definition of the sum for two sets, see (6), we have $a+b \in A+B$. By definition of the minimum, see \Rightarrow in (2), we have that $z \ge \min(A+B)$ for all $z \in A+B$. Since we already proved that $a+b \in A+B$, we conclude that $a+b \ge \min(A+B)$. This proves (7).

(ii) Assume that A and B have maximums and set $c = \max A$ and $d = \max B$. By definition of the maximum, see \Rightarrow in (3), we have that $a \in A$ and $b \in B$. By definition of the sum for two sets, see (6), we have $a + b \in A + B$. By definition of the maximum, see \Rightarrow in (3), we have that $z \leq \max(A + B)$ for all $z \in A + B$. Since we already proved that $a + b \in A + B$, we conclude that $a + b \leq \min(A + B)$. This proves (8).