On minimums and maximums

Branko Ćurgus

October 13, 2020

Definition 1. Let A and B be two sets. We say that A is a subset of B, and write $A \subseteq B$, if and only if for every $x \in A$ we have $x \in B$. In notation

$$
\begin{equation*}
A \subseteq B \quad \Leftrightarrow \quad \forall x(x \in A \Rightarrow x \in B) \tag{1}
\end{equation*}
$$

Definition 2. Let S be a subset of \mathbb{R}. If u is the smallest number in S, then u is called a minimum of S and we write $u=\min S$. If v is the greatest number in S, then v is called a maximum of S and we write $v=\max S$. More formally, we express these definitions as logical statements:

$$
\left.\begin{array}{lll}
u=\min S & \Leftrightarrow & (u \in S) \wedge(\forall x \in S \\
v=x) \tag{3}\\
v=\max S & \Leftrightarrow & (v \in S) \wedge(\forall x \in S
\end{array} \quad x \leq v\right)
$$

Proposition 3. Let A and B be nonempty subsets of \mathbb{R} such that $A \subseteq B$. The following statements hold.
(i) If the sets A and B have minimums, then

$$
\begin{equation*}
\min B \leq \min A . \tag{4}
\end{equation*}
$$

(ii) If the sets A and B have maximums, then

$$
\begin{equation*}
\max A \leq \max B \tag{5}
\end{equation*}
$$

Proof. Assume A and B be nonempty subsets of \mathbb{R} such that $A \subseteq B$.
(i) Assume that A and B have minimums and set $a=\min A$ and $b=\min B$. By definition of the minimum, see \Rightarrow in (2), we have $a \in A$. By definition of the subset, see \Rightarrow in (1), $a \in A$ implies $a \in B$. Hence $a \in B$ holds. Since $b=\min B$, by definition of the minimum, see \Rightarrow in (2), we have that $b \leq y$ for all $y \in B$. Since we already proved that $a \in B$, we conclude that $b \leq a$. This proves (4).
(ii) Assume that A and B have maximums and set $c=\max A$ and $d=\max B$. By definition of the maximum, see \Rightarrow in (3), we have $c \in A$. By definition of the subset, see \Rightarrow in (1), we deduce that $c \in B$. Since $d=\max B$, by definition of the maximum, see \Rightarrow in (3), we have that $y \leq d$ for all $y \in B$. Since we already proved that $c \in B$, we conclude that $c \leq d$. This proves (5).

Definition 4. Let A and B be nonempty subsets of \mathbb{R}. We define the sum $A+B$ to be the following set

$$
\begin{equation*}
A+B=\{x+y \in \mathbb{R}:(x \in A) \wedge(y \in B)\} \tag{6}
\end{equation*}
$$

Proposition 5. Let A and B be nonempty subsets of \mathbb{R}. The following statements hold.
(i) If the sets A and B have minimums, then

$$
\begin{equation*}
\min (A+B)=\min A+\min B \tag{7}
\end{equation*}
$$

(ii) If the sets A and B have maximums, then

$$
\begin{equation*}
\max (A+B)=\max A+\max B \tag{8}
\end{equation*}
$$

Proof. Assume A and B be nonempty subsets of \mathbb{R}.
(i) Assume that A and B have minimums and set $a=\min A$ and $b=\min B$. By definition of the minimum, see \Rightarrow in (2), we have that $a \in A$ and $b \in B$. By definition of the sum for two sets, see (6), we have $a+b \in A+B$. By definition of the minimum, see \Rightarrow in (2), we have that $z \geq \min (A+B)$ for all $z \in A+B$. Since we already proved that $a+b \in A+B$, we conclude that $a+b \geq \min (A+B)$. This proves (7).
(ii) Assume that A and B have maximums and set $c=\max A$ and $d=\max B$. By definition of the maximum, see \Rightarrow in (3), we have that $a \in A$ and $b \in B$. By definition of the sum for two sets, see (6), we have $a+b \in A+B$. By definition of the maximum, see \Rightarrow in (3), we have that $z \leq \max (A+B)$ for all $z \in A+B$. Since we already proved that $a+b \in A+B$, we conclude that $a+b \leq \min (A+B)$. This proves (8).

