The number e is irrational
Branko Ćurgus
November 11, 2020

Here we use the following definition of e :

$$
e=\lim _{n \rightarrow+\infty} \sum_{k=0}^{n} \frac{1}{k!} .
$$

Lemma 1. For every $m, n \in \mathbb{N}$ we have

$$
\begin{equation*}
\sum_{k=0}^{n} \frac{1}{k!} \leq \frac{2}{(m+1)!}+\sum_{k=0}^{m} \frac{1}{k!} \tag{1}
\end{equation*}
$$

Proof. Let $m, n \in \mathbb{N}$. For $n \leq m$ the inequality is clear. If $n>m$ we have

$$
\begin{aligned}
\sum_{k=0}^{n} \frac{1}{k!} & =\sum_{k=0}^{m} \frac{1}{k!}+\sum_{k=m+1}^{n} \frac{1}{k!} \text { algebra } \\
& =\sum_{k=0}^{m} \frac{1}{k!}+\frac{1}{m!} \sum_{k=m+1}^{n} \frac{m!}{k!} \quad \text { alopebra } \\
\text { pi220-party } & =\sum_{k=0}^{m} \frac{1}{k!}+\frac{1}{m!}\left(\frac{1}{m+1}+\frac{1}{(m+1)(m+2)}+\cdots+\frac{1}{(m+1) \cdots n}\right) \text { algebra } \\
& \leq \sum_{k=0}^{m} \frac{1}{k!}+\frac{1}{m!}\left(\frac{1}{m+1}+\frac{1}{(m+1)(m+2)}+\cdots+\frac{1}{(n-1) n}\right) \\
& =\sum_{k=0}^{m} \frac{1}{k!}+\frac{1}{m!}\left(\frac{1}{m+1}+\left(\frac{1}{m+1}-\frac{1}{m / 2}\right)+\cdots+\left(\frac{1}{n-1}-\frac{1}{n}\right)\right) \text { alga } \\
& =\sum_{k=0}^{m} \frac{1}{k!}+\frac{1}{m!}\left(\frac{2}{m+1}-\frac{1}{n}\right) \quad \\
& \leq \sum_{k=0}^{m} \frac{1}{k!}+\frac{2}{(m+1)!}
\end{aligned}
$$

The following theorem is proved somewhere else. It is the background knowledge in this context. Theorem 2. Let $L \in \mathbb{R}$ and let $\left\{s_{n}\right\}$, be a convergent sequence with the limit L. Let $a, b \in \mathbb{R}$ be such that for some $n_{0} \in \mathbb{N}$ we have

$$
a \leq s_{n} \leq b
$$

for all $n \in \mathbb{N}$ such that $n \geq n_{0}$. Then $a \leq L \leq b$.

$$
m \in \mathbb{X} \text { is fixed. Let } n \in \mathbb{X} \text { be sit - }
$$

Applying Theorem 2 to inequality (1) and the definition of e va obtain the following corollary.
Corollary 3. For every $m \in \mathbb{N}$ we have

$$
\begin{equation*}
\sum_{k=0}^{m} \frac{1}{k!}<e \leq \frac{2}{(m+1)!}+\sum_{k=0}^{m} \frac{1}{k!} \tag{2}
\end{equation*}
$$

In particular, with $m=3$,

$$
\begin{equation*}
\frac{8}{3}<e<\frac{11}{4} \tag{3}
\end{equation*}
$$

Theorem 4. For all $p \in \mathbb{Z}$ and and all $q \in \mathbb{N}$ we have

$$
\begin{equation*}
e \neq \frac{p}{q} \tag{4}
\end{equation*}
$$

Proof. Since e is positive, (4) holds for all $q \in \mathbb{N}$ and all $p \in \mathbb{Z}$ such that $p \leq 0$.
Let $q \in \mathbb{N}$ be such that $q>1$. By (2) we have

$$
0<q!\left(e-\sum_{k=0}^{q} \frac{1}{k!}\right) \leq q!\frac{2}{(q+1)!}=\frac{2}{q+1} \leq \frac{2}{3} .
$$

If $q=1$, then by (3)

$$
0<1!\left(e-\sum_{k=0}^{1} \frac{1}{k!}\right)=e-2 \leq \frac{3}{4} .
$$

From the preceding two displayed inequalities we have

Let $p, q \in \mathbb{N}$. Then

$$
\begin{gather*}
\forall q \in \mathbb{N} \quad q!\left(e-\sum_{k=0}^{q} \frac{1}{k!}\right) \notin \mathbb{Z} . \tag{5}\\
q!\left(\frac{p}{q}-\sum_{k=0}^{q} \frac{1}{k!}\right)=p(q-1)!-\sum_{k=0}^{q} \frac{q!}{k!} .
\end{gather*}
$$

Since

$$
\forall k \in\{0,1, \ldots, q\} \quad \frac{q!}{k!} \in \mathbb{Z}
$$

equality (6) yields

$$
\begin{equation*}
\forall p \in \mathbb{N} \quad \forall q \in \mathbb{N} \quad q!\left(\frac{p}{q}-\sum_{k=0}^{q} \frac{1}{k!}\right) \in \mathbb{Z} \tag{7}
\end{equation*}
$$

From (5) and (7) we deduce

$$
\forall p \in \mathbb{N} \forall q \in \mathbb{N} \quad q!\left(e-\sum_{k=0}^{q} \frac{1}{k!}\right) \neq q!\left(\frac{p}{q}-\sum_{k=0}^{q} \frac{1}{k!}\right)
$$

Consequently,

$$
\forall p \in \mathbb{N} \quad \forall q \in \mathbb{N} \quad e \neq \frac{p}{q} .
$$

Together with the first sentence of this proof, this proves the theorem.

iv

