The number e is irrational

Branko Ćurgus

November 11, 2020

Here we use the following definition of e:

$$e = \lim_{n \to +\infty} \sum_{k=0}^{n} \frac{1}{k!}.$$

Lemma 1. For every $m, n \in \mathbb{N}$ we have

$$\sum_{k=0}^{n} \frac{1}{k!} \le \frac{2}{(m+1)!} + \sum_{k=0}^{m} \frac{1}{k!}.$$
(1)

Proof. Let $m, n \in \mathbb{N}$. For $n \leq m$ the inequality is clear. If n > m we have

$$\sum_{k=0}^{n} \frac{1}{k!} = \sum_{k=0}^{m} \frac{1}{k!} + \sum_{k=m+1}^{n} \frac{1}{k!} \quad algebra$$

$$= \sum_{k=0}^{m} \frac{1}{k!} + \frac{1}{m!} \sum_{k=m+1}^{n} \frac{m!}{k!} \quad algebra$$

$$= \sum_{k=0}^{m} \frac{1}{k!} + \frac{1}{m!} \left(\frac{1}{m+1} + \frac{1}{(m+1)(m+2)} + \dots + \frac{1}{(m+1)(m+2)} \right) \quad algebra$$

$$= \sum_{k=0}^{m} \frac{1}{k!} + \frac{1}{m!} \left(\frac{1}{m+1} + \frac{1}{(m+1)(m+2)} + \dots + \frac{1}{(n-1)n} \right)$$

$$= \sum_{k=0}^{m} \frac{1}{k!} + \frac{1}{m!} \left(\frac{1}{m+1} + \left(\frac{1}{m+1} - \frac{1}{m+2} \right) + \frac{1}{(m+1)(m+2)} + \frac{1}{(m-1)(m+2)} \right) \quad algebra$$

$$= \sum_{k=0}^{m} \frac{1}{k!} + \frac{1}{m!} \left(\frac{2}{m+1} - \frac{1}{n} \right) \quad drop - \frac{1}{n} < O$$

$$\leq \sum_{k=0}^{m} \frac{1}{k!} + \frac{2}{(m+1)!} \qquad \Box$$

The following theorem is proved somewhere else. It is the background knowledge in this context.

Theorem 2. Let $L \in \mathbb{R}$ and let $\{s_n\}$, be a convergent sequence with the limit L. Let $a, b \in \mathbb{R}$ be such that for some $n_0 \in \mathbb{N}$ we have

 $a \leq s_n \leq b$

for all $n \in \mathbb{N}$ such that $n \ge n_0$. Then $a \le L \le b$.

