
Representation of integers in base b

Integers are usually expressed by decimal notation. For instance 27182818 means

2 · 107 + 7 · 106 + 1 · 105 + 8 · 104 + 2 · 103 + 8 · 102 + 1 · 101 + 8

The theorem that we prove below provides a rigorous justification for this, and other, represen-
tations of integers.

In this handout b is a positive integer such that b > 1. By D we denote the set {0, 1, . . . , b−1}.
By N0 we denote the set {0} ∪ N.

Lemma 1. Let k be a nonnegative integer and let d0, . . . , dk ∈ D. Then

dk bk + · · ·+ d1 b + d0 ≤ bk+1 − 1. (1)

Proof. In the following calculation we use that dj ≤ b − 1 for all j = 0, . . . , k:

bkdk + bk−1dk−1 + · · ·+ b d1 + d0 ≤ bk(b − 1) + bk−1(b − 1) + · · ·+ b (b − 1) + (b − 1)

= bk+1 − bk + bk − bk−1 + · · · + b2 − b + b − 1

= bk+1 − 1.

This proves (1).

Theorem 2. Let a be a positive integer. Then there exist unique nonnegative integer m and
unique d0, . . . , dm ∈ D with dm > 0 such that

a = dmbm + · · · + d1b + d0.

Proof. Set
S =

{

x : x ≤ a, x = bk with k ∈ N0

}

. (2)

Since 1 = b0 and 1 ≤ a, the set S is not empty. By definition (2), S is bounded above by a.
Hence, the well ordering principle implies that S has the maximum. Set y = maxS and let
m ∈ N0 be such that y = bm. Notice that the definition of m implies that

bm ≤ a < bm+1. (3)

Now set q0 = a and apply the division algorithm (dividing with b) exactly m + 1 times:

a = q0 = b q1 + d0, where q1 ∈ Z, d0 ∈ D,

q1 = b q2 + d1, where q2 ∈ Z, d1 ∈ D,

q2 = b q3 + d2, where q3 ∈ Z, d2 ∈ D,

...

qm−1 = b qm + dm−1, where qm ∈ Z, dm−1 ∈ D,

qm = b qm+1 + dm, where qm+1 ∈ Z, dm ∈ D.
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Consecutive substitution, starting from the last equation, yields the following expression for a:

a = bm+1qm+1 + bm dm + · · · + b d1 + d0. (4)

By Lemma 1
bmdm + bm−1 dm−1 + · · · + b d1 + d0 ≤ bm+1 − 1. (5)

Substituting (5) in (4) we get

a ≤ bm+1qm+1 + bm+1 − 1 = bm+1
(

qm+1 + 1
)

− 1.

Since a ≥ 1,
bm+1

(

qm+1 + 1
)

≥ 2.

Therefore,
qm+1 ≥ 0. (6)

By (3) and (4),
bm+1qm+1 ≤ a < bm+1.

Consequently,
qm+1 < 1. (7)

Inequalities (6) and (7) qm+1 = 0. Thus (4) becomes

a = bmdm + · · ·+ b d1 + d0. (8)

By Lemma 1 we have bm−1dm−1 + · · ·+ b d1 + d0 ≤ bm − 1. Therefore (8) and (3) imply

bm ≤ a ≤ bmdm + bm − 1.

Hence, bmdm ≥ 1, and consequently dm ≥ 1. This proves the existence part of the theorem.
To prove the uniqueness, suppose that k ∈ N0 and c0, . . . , ck ∈ D with ck > 0 are such that

a = bkck + · · · + b c1 + c0. (9)

Then bk ≤ ckb
k ≤ a. Therefore, bk ∈ S. By Lemma 1, a ≤ bk+1 − 1 < bk+1. Thus, bk ≤ bm ≤

a < bk+1. Consequently, 1 ≤ bm−k < b1, and therefore k = m. Now, subtracting (9) from (8),
yields

bm
(

dm − cm

)

+ · · ·+ b
(

d1 − c1

)

+ d0 − c0 = 0. (10)

That is,

c0 − d0 = b
(

bm−1
(

dm − cm

)

+ · · ·+
(

d1 − c1

)

)

. (11)

Since by assumption −b < c0 − d0 < b, we get

−1 < bm−1
(

dm − cm

)

+ · · · +
(

d1 − c1

)

< 1.

Therefore,
bm−1

(

dm − cm

)

+ · · ·+
(

d1 − c1

)

= 0. (12)

Hence, by (11), c0 = d0. Now, starting from (12) instead of (10) and using −b < c1 − d1 < b,
yields c1 = d1. Repeating this process m + 1 times proves that cj = dj for all j = 0, 1, . . . , m.

This completes the proof of the theorem.
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