Representation of integers in base b

Integers are usually expressed by decimal notation. For instance 27182818 means

$$
2 \cdot 10^{7}+7 \cdot 10^{6}+1 \cdot 10^{5}+8 \cdot 10^{4}+2 \cdot 10^{3}+8 \cdot 10^{2}+1 \cdot 10^{1}+8
$$

The theorem that we prove below provides a rigorous justification for this, and other, representations of integers.

In this handout b is a positive integer such that $b>1$. By \mathbb{D} we denote the set $\{0,1, \ldots, b-1\}$. By \mathbb{N}_{0} we denote the set $\{0\} \cup \mathbb{N}$.

Lemma 1. Let k be a nonnegative integer and let $d_{0}, \ldots, d_{k} \in \mathbb{D}$. Then

$$
\begin{equation*}
d_{k} b^{k}+\cdots+d_{1} b+d_{0} \leq b^{k+1}-1 \tag{1}
\end{equation*}
$$

Proof. In the following calculation we use that $d_{j} \leq b-1$ for all $j=0, \ldots, k$:

$$
\begin{aligned}
b^{k} d_{k}+b^{k-1} d_{k-1}+\cdots+b d_{1}+d_{0} & \leq b^{k}(b-1)+b^{k-1}(b-1)+\cdots+b(b-1)+(b-1) \\
& =b^{k+1}-b^{k}+b^{k}-b^{k-1}+\cdots+b^{2}-b+b-1 \\
& =b^{k+1}-1 .
\end{aligned}
$$

This proves (1).
Theorem 2. Let a be a positive integer. Then there exist unique nonnegative integer m and unique $d_{0}, \ldots, d_{m} \in \mathbb{D}$ with $d_{m}>0$ such that

$$
a=d_{m} b^{m}+\cdots+d_{1} b+d_{0} .
$$

Proof. Set

$$
\begin{equation*}
S=\left\{x: x \leq a, x=b^{k} \text { with } k \in \mathbb{N}_{0}\right\} . \tag{2}
\end{equation*}
$$

Since $1=b^{0}$ and $1 \leq a$, the set S is not empty. By definition (2), S is bounded above by a. Hence, the well ordering principle implies that S has the maximum. Set $y=\max S$ and let $m \in \mathbb{N}_{0}$ be such that $y=b^{m}$. Notice that the definition of m implies that

$$
\begin{equation*}
b^{m} \leq a<b^{m+1} \tag{3}
\end{equation*}
$$

Now set $q_{0}=a$ and apply the division algorithm (dividing with b) exactly $m+1$ times:

$$
\begin{aligned}
& a=q_{0}=b q_{1}+d_{0}, \quad \text { where } \quad q_{1} \in \mathbb{Z}, \quad d_{0} \in \mathbb{D}, \\
& q_{1}=b q_{2}+d_{1}, \quad \text { where } \quad q_{2} \in \mathbb{Z}, \quad d_{1} \in \mathbb{D}, \\
& q_{2}=b q_{3}+d_{2}, \quad \text { where } \quad q_{3} \in \mathbb{Z}, \quad d_{2} \in \mathbb{D}, \\
& q_{m-1}=b q_{m}+d_{m-1}, \quad \text { where } \quad q_{m} \in \mathbb{Z}, \quad d_{m-1} \in \mathbb{D}, \\
& q_{m}=b q_{m+1}+d_{m}, \quad \text { where } \quad q_{m+1} \in \mathbb{Z}, \quad d_{m} \in \mathbb{D} .
\end{aligned}
$$

Consecutive substitution, starting from the last equation, yields the following expression for a :

$$
\begin{equation*}
a=b^{m+1} q_{m+1}+b^{m} d_{m}+\cdots+b d_{1}+d_{0} . \tag{4}
\end{equation*}
$$

By Lemma 1

$$
\begin{equation*}
b^{m} d_{m}+b^{m-1} d_{m-1}+\cdots+b d_{1}+d_{0} \leq b^{m+1}-1 . \tag{5}
\end{equation*}
$$

Substituting (5) in (4) we get

$$
a \leq b^{m+1} q_{m+1}+b^{m+1}-1=b^{m+1}\left(q_{m+1}+1\right)-1 .
$$

Since $a \geq 1$,

$$
b^{m+1}\left(q_{m+1}+1\right) \geq 2
$$

Therefore,

$$
\begin{equation*}
q_{m+1} \geq 0 \tag{6}
\end{equation*}
$$

By (3) and (4),

$$
b^{m+1} q_{m+1} \leq a<b^{m+1}
$$

Consequently,

$$
\begin{equation*}
q_{m+1}<1 \tag{7}
\end{equation*}
$$

Inequalities (6) and (7) $q_{m+1}=0$. Thus (4) becomes

$$
\begin{equation*}
a=b^{m} d_{m}+\cdots+b d_{1}+d_{0} . \tag{8}
\end{equation*}
$$

By Lemma 1 we have $b^{m-1} d_{m-1}+\cdots+b d_{1}+d_{0} \leq b^{m}-1$. Therefore (8) and (3) imply

$$
b^{m} \leq a \leq b^{m} d_{m}+b^{m}-1
$$

Hence, $b^{m} d_{m} \geq 1$, and consequently $d_{m} \geq 1$. This proves the existence part of the theorem.
To prove the uniqueness, suppose that $k \in \mathbb{N}_{0}$ and $c_{0}, \ldots, c_{k} \in \mathbb{D}$ with $c_{k}>0$ are such that

$$
\begin{equation*}
a=b^{k} c_{k}+\cdots+b c_{1}+c_{0} . \tag{9}
\end{equation*}
$$

Then $b^{k} \leq c_{k} b^{k} \leq a$. Therefore, $b^{k} \in S$. By Lemma 1, $a \leq b^{k+1}-1<b^{k+1}$. Thus, $b^{k} \leq b^{m} \leq$ $a<b^{k+1}$. Consequently, $1 \leq b^{m-k}<b^{1}$, and therefore $k=m$. Now, subtracting (9) from (8), yields

$$
\begin{equation*}
b^{m}\left(d_{m}-c_{m}\right)+\cdots+b\left(d_{1}-c_{1}\right)+d_{0}-c_{0}=0 \tag{10}
\end{equation*}
$$

That is,

$$
\begin{equation*}
c_{0}-d_{0}=b\left(b^{m-1}\left(d_{m}-c_{m}\right)+\cdots+\left(d_{1}-c_{1}\right)\right) . \tag{11}
\end{equation*}
$$

Since by assumption $-b<c_{0}-d_{0}<b$, we get

$$
-1<b^{m-1}\left(d_{m}-c_{m}\right)+\cdots+\left(d_{1}-c_{1}\right)<1 .
$$

Therefore,

$$
\begin{equation*}
b^{m-1}\left(d_{m}-c_{m}\right)+\cdots+\left(d_{1}-c_{1}\right)=0 \tag{12}
\end{equation*}
$$

Hence, by (11), $c_{0}=d_{0}$. Now, starting from (12) instead of (10) and using $-b<c_{1}-d_{1}<b$, yields $c_{1}=d_{1}$. Repeating this process $m+1$ times proves that $c_{j}=d_{j}$ for all $j=0,1, \ldots, m$.

This completes the proof of the theorem.

