All about the set $\{x \in \mathbb{Z}: x>0$ and $x \leq 1\}$

Proposition 1. The only element of the set $\{x \in \mathbb{Z}: x>0$ and $x \leq 1\}$ is the number 1.

Proof. Set $S:=\{x \in \mathbb{Z}: x>0$ and $x \leq 1\}$. Since we proved $0<1$ and clearly $1 \leq 1$, we have $1 \in S$. Thus $S \neq \emptyset$. Since by definition $0<x$ for all $x \in S$, the set S is bounded below by zero. Therefore, the Well-Ordering Axiom the set S has a minimum. Set $m:=\min S$. The integer m has the following two properties:

$$
\begin{gathered}
m \in S \\
m \leq x \quad \text { for all } \quad x \in S .
\end{gathered}
$$

Since $m \in S, m>0$ and $m \leq 1$. Therefore, by Axiom 15 applied twice, $m^{2}>0$ and $m^{2} \leq m$. The last inequality, Axiom 13 and $m \leq 1$ imply $m^{2} \leq 1$. Hence $m^{2} \in S$. Since m is the minimum of S, we have $m \leq m^{2}$. Since we already proved $m^{2} \leq m$, it follows that $m^{2}=m$; that is $m m=1 \mathrm{~m}$. Since we know that $m \neq 0$, Axiom 10 implies $m=1$.

Let x be an arbitrary number in S. Then, by definition of $S, x \leq 1$. Since $1=\min S, 1 \leq x$. Hence $x=1$. This proves that 1 is the only element in S.

Proposition 2. Let $k \in \mathbb{Z}$. Then $\{x \in \mathbb{Z}: x>k$ and $x \leq k+1\}=\{k+1\}$.
Proof. Set, as before,

$$
S:=\{x \in \mathbb{Z}: x>0 \text { and } x \leq 1\}
$$

and

$$
T:=\{x \in \mathbb{Z}: x>k \text { and } x \leq k+1\} .
$$

We will prove the following equivalence:

$$
x \in T \quad \Leftrightarrow \quad x-k \in S
$$

Assume $x \in T$. Then $x>k$ and $x \leq k+1$. By Axiom $14, x-k>0$ and $x-k \leq 1$. Therefore $x-k \in S$.

Now assume $x-k \in S$. Then, $x-k>0$ and $x-k \leq 1$. By Axiom 14, $x>k$ and $x \leq k+1$. Therefore $x \in T$.

By Proposition $1, x-k \in S$ if and only if $x-k=1$. Clearly, $x-k=1$ if and only if $x=k+1$. Thus,

$$
x-k \in S \quad \Leftrightarrow \quad x=k+1
$$

The last two displayed equivalences yield

$$
x \in T \quad \Leftrightarrow \quad x=k+1
$$

The last equivalence implies $T=\{k+1\}$.

