\qquad

Problem 1. Let a, b, c, j, k be positive integers such that

$$
a=c j, \quad b=c k
$$

(a) Prove the implication: If $\operatorname{lcm}(j, k)=m$, then $\operatorname{lcm}(a, b)=c m$.
(b) Is the converse implication true? Justify your answer.

Problem 2. Let $k \in \mathbb{N}$. Let $t_{k}=\frac{k(k+1)}{2}$ be the k-th triangular number. Find the formula for $\operatorname{gcd}\left(t_{k}, t_{k+1}\right)$ in terms of k. Prove that your formula is correct.

Problem 3. Let a and b be integers, not both zero. Prove that a and b are relatively prime if and only if there exists an integer c such that $a \mid c$ and $b \mid(c+1)$.

Problem 4. Let a and b be integers, not both zero. Let $d=\operatorname{gcd}(a, b)$. Prove that $\operatorname{gcd}\left(a^{2}, b^{2}\right)=d^{2}$. (Hint: First consider the special case of relatively prime integers a and b.)

Problem 5. Let a and b be positive integers. Prove that $\left(b^{2}\right) \mid\left(a^{2}\right)$ if and only if $b \mid a$.

