MATH $302 \begin{gathered}\text { Assigument } 1 \\ \text { May } 7,2009\end{gathered}$

Solutions

Problem 1. Let a, b, c, j, k be positive integers such that

$$
a=c j, \quad b=c k
$$

(a) Prove the implication: If $\operatorname{lcm}(j, k)=m$, then $\operatorname{lcm}(a, b)=c m$.
(b) Is the converse implication true? Justify your answer.

Proof. Let

$$
S=\{x \in \mathbb{Z}: x>0, j|x, k| x\}
$$

and

$$
T=\{y \in \mathbb{Z}: y>0, a|y, b| y\}
$$

By Proposition 1.3.9 the set S has a minimum and T has a minimum. By Definition 2.1.6

$$
\operatorname{lcm}(j, k)=\min S \quad \text { and } \quad \operatorname{lcm}(a, b)=\min T
$$

Proof of (a). Assume that $m=\operatorname{lcm}(j, k)=\min S$. Then $m \in S$, that is m is a positive multiple of j and k. Therefore, there exist integers u, v such that $m=u j, m=v k$. Multiplying the last two equations by c we get $m c=u j c$ and $m c=v k c$. Since $a=c j$ and $b=c k$, we get $m c=u a$ and $m c=v b$. Thus $m c$ is a multiple of both a and b. Moreover, since $c>0, m c>0$. Hence $m c \in T$. Therefore $\operatorname{lcm}(a, b) \leq m c$.

I still need to prove $\operatorname{lcm}(a, b) \geq m c$. Here is a proof. To prove this I will use the fact that $m=\min S$. Set $n=\operatorname{lcm}(a, b)$. Then n is a positive common multiple of a and b. Therefore, there exist $w, z \in \mathbb{Z}$ such that $n=a w, n=b z$. Since $a=c j$ and $b=c k$, we get $n=c j w, n=c k z$. Thus n is a multiple of c and $n=c f$ where $f=j w=k z$. Since both n and c are positive f is positive. Also f is a common multiple of j and k. Therefore $f \in S$. Hence $f \geq m$. Since $c>0$, we get $f c \geq m c$. Recall that $n=c f$. Thus, $n \geq m c$. So, we proved $\operatorname{lcm}(a, b) \geq m c$.

Proof of (b). The converse implication is true and the proof is similar to the proof of (a).
Assume that $m c=\operatorname{lcm}(a, b)=\min T$. Then $m c \in T$, that is $m c$ is a positive multiple of a and b. Therefore, there exist integers q, r such that $m c=q a, m c=r b$. Since $a=c j$ and $b=c k$, we get $m c=q j c$ and $m c=r k c$. Therefore $m=q j=r k$. Thus m is a positive common multiple of j and k. That is, $m \in S$. Therefore $m \geq \operatorname{lcm}(j, k)$.

I still need to prove $\operatorname{lcm}(j, k) \geq m$. Here is a proof. To prove this I will use the fact that $m c=\min T$. Set $o=\operatorname{lcm}(j, k)$. Then o is a positive common multiple of j and k. Therefore, there exist $s, t \in \mathbb{Z}$ such that $o=s j, o=t k$. Multiplying the last two equalities by c we get $o c=s j c=t k c$. Since $a=c j$ and $b=c k$, we get $o c=s a=t b$. Thus $o c$ is a common multiple of a and b. Moreover $o c$ is positive. Thus $o c \in T$. Therefore $o c \geq m c$. Since $c>0$ we conclude that $o \geq m$. Thus $\operatorname{lcm}(j, k) \geq m$ is proved.

Before before doing remaining problems I will prove two lemmas.
Lemma 1. If a and b are relatively prime and $c>0$, then $\operatorname{gcd}(a c, b c)=c$.

Proof. Assume that a and b are relatively prime and $c>0$. Set $d=\operatorname{gcd}(a c, b c)$. Clearly c is a common divisor of both $a c$ and $b c$. Since d is the greatest common divisor of $a c$ and $b c$ we get $c \leq d$. By Theorem 2.1.3 there exist $x, y \in \mathbb{Z}$ such that $a x+b y=1$. Multiplying by c we get $a c x+b c y=c$. Since d is common divisor of $a c$ and $b c$, there exist $u, v \in \mathbb{Z}$ such that $a c=d u$ and $b c=d v$. Hence $d u x+d v y=c$. Thus $d(u x+v y)=c$. Since both d and c are positive, we conclude that $u x+v y$ is positive and consequently $d \leq c$. So, we proved $c \leq d$ and $d \leq c$. Consequently $d=c$.

Lemma 2. Let $c \in \mathbb{Z}$. If d is a positive integer such that $d \mid c$ and $d \mid(c+1)$, then $d=1$.
Proof. Assume that $d>0, d \mid c$ and $d \mid(c+1)$ Consequently $d \mid(-c)$. By Proposition 1.2.3 we get $d \mid((c+1)-c)$, that is $d \mid 1$. Since $d>0$ we deduce that $d=1$.

Problem 2. Let $k \in \mathbb{N}$. Let $t_{k}=\frac{k(k+1)}{2}$ be the k-th triangular number. Find the formula for $\operatorname{gcd}\left(t_{k}, t_{k+1}\right)$ in terms of k. Prove that your formula is correct.

Proof. If k is even, then $\operatorname{gcd}\left(t_{k}, t_{k+1}\right)=k+1$. Assume that k is even and set $k=2 j$, where $j \in \mathbb{N}$. Then $t_{k}=j(2 j+1)$ and $t_{k+1}=(2 j+1)(j+1)$. Since $\operatorname{gcd}(j, j+1)=1$, by Lemma1, we conclude that $\operatorname{gcd}\left(t_{k}, t_{k+1}\right)=2 j+1=k+1$. (Here is a proof that $\operatorname{gcd}(j, j+1)=1$. Set $d=\operatorname{gcd}(j, j+1)$. Then $d \mid(j+1)$ and $d \mid j$. By Lemma $2, d=1$. Thus $\operatorname{gcd}(j, j+1)=1$.)

If k is odd, then $\operatorname{gcd}\left(t_{k}, t_{k+1}\right)=(k+1) / 2$. Assume that k is odd and set $k=2 j-1$, where $j \in \mathbb{N}$. Then $t_{k}=(2 j-1) j$ and $t_{k+1}=j(2 j+1)$. Next I will prove that Since $\operatorname{gcd}(2 j-1,2 j+1)=1$. Set $d=\operatorname{gcd}(2 j-1,2 j+1)$. Then $d \mid(2 j-1)$ and $d \mid(2 j+1)$. Consequently, $d \mid((2 j+1)-(2 j-1)$, that is $d \mid 2$. Hence $d=1$ or $d=2$. Since $2 j+1$ is odd, 2 does not divide $2 j+1$. Since $d \mid(2 j+1)$ we conclude $d \neq 2$. Therefore, $d=1$. By Lemma1, since $\operatorname{gcd}(2 j-1,2 j+1)=1$ we have $\operatorname{gcd}((2 j-1) j,(2 j+1) j)=j$. Since $t_{k}=(2 j-1) j, t_{k+1}=j(2 j+1)$ and $j=(k+1) / 2$, the claim is proved.

Problem 3. Let a and b be nonzero integers. Prove that a and b are relatively prime if and only if there exists an integer c such that $a \mid c$ and $b \mid(c+1)$.

Proof. Assume that a and b are relatively prime. Then $\operatorname{gcd}(a, b)=1$. By Theorem 2.1.3 there exist $x, y \in \mathbb{Z}$ such that $a x+b y=1$. Set $c=-a x$. Then, $a \mid c$. Also, $b y=1-a x=1+c$. Therefore $b \mid(c+1)$. This proves the existence of $c \in \mathbb{Z}$ such that $a \mid c$ and $b \mid(c+1)$.

Assume that there exists $c \in \mathbb{Z}$ such that $a \mid c$ and $b \mid(c+1)$. Let $d=\operatorname{gcd}(a, b)$. Then d is a positive number and $d \mid a$ and $d \mid b$. Since $a \mid c$ and $b \mid(c+1)$, we conclude that $d \mid c$ and $d \mid(c+1)$. By Lemma 2 we deduce that $d=1$. Thus, a and b are relatively prime.

Problem 4. Let a and b be integers, not both zero. Let $d=\operatorname{gcd}(a, b)$. Prove that $\operatorname{gcd}\left(a^{2}, b^{2}\right)=d^{2}$. (Hint: First consider the special case of relatively prime integers a and b.)

Proof. Let a and b be integers, not both zero. Assume that $\operatorname{gcd}(a, b)=1$. Set $g=\operatorname{gcd}\left(a^{2}, b^{2}\right)$. I need to prove that $g=1$. (I will use Michael's brilliant idea here.) By Theorem 2.1.3 there exist integers x and y such that $a x+b y=1$. Now do some algebra

$$
1=1^{3}=(a x+b y)^{3}=a^{3} x^{3}+3 a^{2} x^{2} b y+3 a x b^{2} y^{2}+b^{3} y^{3}=a^{2}\left(a x^{3}+3 x^{2} b y\right)+b^{2}\left(3 a x b^{2} y^{2}+b y^{3}\right)
$$

Set $u=a x^{3}+3 x^{2} b y$ and $v=3 a x b^{2} y^{2}+b y^{3}$. Thus $a^{2} u+b^{2} v=1$. Since $g=\operatorname{gcd}\left(a^{2}, b^{2}\right)$, there exist $s, t \in \mathbb{Z}$ such that $a^{2}=g s$ and $b^{2}=g t$. Hence

$$
1=a^{2} u+b^{2} v=g s u+g t v=g(s u+t v)
$$

that is $g \mid 1$. Since $g>0$ we conclude $g=1$. This completes the first part of the proof.
Now assume that $d=\operatorname{gcd}(a, b)>1$. Then there exist $j, k \in \mathbb{Z}$ such that $a=d j$ and $b=d k$. By Proposition 2.2.5 it follows that $\operatorname{gcd}(j, k)=1$. By the first part of this proof it follows that $\operatorname{gcd}\left(j^{2}, k^{2}\right)=1$. Since $a^{2}=d^{2} j^{2}$ and $b^{2}=d^{2} k^{2}$ and since j^{2} and k^{2} are relatively prime, Lemma 1 implies that

$$
\operatorname{gcd}\left(a^{2}, b^{2}\right)=\operatorname{gcd}\left(d^{2} j^{2}, d^{2} k^{2}\right)=d^{2} .
$$

Problem 5. Let a and b be positive integers. Prove that $\left(b^{2}\right) \mid\left(a^{2}\right)$ if and only if $b \mid a$.
Proof. Assume first that $b \mid a$. Then there exists $u \in \mathbb{Z}$ such that $a=b u$. Then $a^{2}=b^{2} u^{2}$. Since $u^{2} \in \mathbb{Z}$ and $b^{2}>0$, this means $\left(b^{2}\right) \mid\left(a^{2}\right)$.

Now assume that $\left(b^{2}\right) \mid\left(a^{2}\right)$. Set $d=\operatorname{gcd}(a, b)$. Then by Problem 4, $\operatorname{gcd}\left(a^{2}, b^{2}\right)=d^{2}$. But, since $\left(b^{2}\right) \mid\left(a^{2}\right)$, we know that $\operatorname{gcd}\left(a^{2}, b^{2}\right)=b^{2}$. Hence $d^{2}=b^{2}$, that is

$$
0=d^{2}-b^{2}=(d-b)(d+b)
$$

Since $b>0$ and $d>0$ we have $d+b>0$. Therefore, $d-b=0$, that is $d=b$. Since $d \mid a$ we conclude that $b \mid a$.

