MATH 302 Assignment 1 May 7, 2009

Problem 1. Let a, b, c, j, k be positive integers such that

 $a = cj, \quad b = ck.$

(a) Prove the implication: If lcm(j,k) = m, then lcm(a,b) = cm.

(b) Is the converse implication true? Justify your answer.

Proof. Let

$$S = \left\{ x \in \mathbb{Z} : x > 0, \ j | x, \ k | x \right\}$$

and

$$T = \left\{ y \in \mathbb{Z} : y > 0, \ a | y, \ b | y \right\}.$$

By Proposition 1.3.9 the set S has a minimum and T has a minimum. By Definition 2.1.6

 $\operatorname{lcm}(j,k) = \min S$ and $\operatorname{lcm}(a,b) = \min T$.

Proof of (a). Assume that $m = \operatorname{lcm}(j, k) = \min S$. Then $m \in S$, that is m is a positive multiple of j and k. Therefore, there exist integers u, v such that m = uj, m = vk. Multiplying the last two equations by c we get mc = ujc and mc = vkc. Since a = cj and b = ck, we get mc = ua and mc = vb. Thus mc is a multiple of both a and b. Moreover, since c > 0, mc > 0. Hence $mc \in T$. Therefore $\operatorname{lcm}(a, b) \leq mc$.

I still need to prove $lcm(a, b) \ge mc$. Here is a proof. To prove this I will use the fact that $m = \min S$. Set n = lcm(a, b). Then n is a positive common multiple of a and b. Therefore, there exist $w, z \in \mathbb{Z}$ such that n = aw, n = bz. Since a = cj and b = ck, we get n = cjw, n = ckz. Thus n is a multiple of c and n = cf where f = jw = kz. Since both n and c are positive f is positive. Also f is a common multiple of j and k. Therefore $f \in S$. Hence $f \ge m$. Since c > 0, we get $fc \ge mc$. Recall that n = cf. Thus, $n \ge mc$. So, we proved $lcm(a, b) \ge mc$.

Proof of (b). The converse implication is true and the proof is similar to the proof of (a).

Assume that $mc = \operatorname{lcm}(a, b) = \min T$. Then $mc \in T$, that is mc is a positive multiple of a and b. Therefore, there exist integers q, r such that mc = qa, mc = rb. Since a = cj and b = ck, we get mc = qjc and mc = rkc. Therefore m = qj = rk. Thus m is a positive common multiple of j and k. That is, $m \in S$. Therefore $m \ge \operatorname{lcm}(j, k)$.

I still need to prove $\operatorname{lcm}(j,k) \geq m$. Here is a proof. To prove this I will use the fact that $mc = \min T$. Set $o = \operatorname{lcm}(j,k)$. Then o is a positive common multiple of j and k. Therefore, there exist $s, t \in \mathbb{Z}$ such that o = sj, o = tk. Multiplying the last two equalities by c we get oc = sjc = tkc. Since a = cj and b = ck, we get oc = sa = tb. Thus oc is a common multiple of a and b. Moreover oc is positive. Thus $oc \in T$. Therefore $oc \geq mc$. Since c > 0 we conclude that $o \geq m$. Thus $\operatorname{lcm}(j,k) \geq m$ is proved.

Before before doing remaining problems I will prove two lemmas.

Lemma 1. If a and b are relatively prime and c > 0, then gcd(ac, bc) = c.

Solutions

Proof. Assume that a and b are relatively prime and c > 0. Set $d = \gcd(ac, bc)$. Clearly c is a common divisor of both ac and bc. Since d is the greatest common divisor of ac and bc we get $c \leq d$. By Theorem 2.1.3 there exist $x, y \in \mathbb{Z}$ such that ax + by = 1. Multiplying by c we get acx + bcy = c. Since d is common divisor of ac and bc, there exist $u, v \in \mathbb{Z}$ such that ac = du and bc = dv. Hence dux + dvy = c. Thus d(ux + vy) = c. Since both d and c are positive, we conclude that ux + vy is positive and consequently $d \leq c$. So, we proved $c \leq d$ and $d \leq c$. Consequently d = c.

Lemma 2. Let $c \in \mathbb{Z}$. If d is a positive integer such that d|c and d|(c+1), then d=1.

Proof. Assume that d > 0, d|c and d|(c+1) Consequently d|(-c). By Proposition 1.2.3 we get d|((c+1)-c), that is d|1. Since d > 0 we deduce that d = 1.

Problem 2. Let $k \in \mathbb{N}$. Let $t_k = \frac{k(k+1)}{2}$ be the k-th triangular number. Find the formula for $gcd(t_k, t_{k+1})$ in terms of k. Prove that your formula is correct.

Proof. If k is even, then $gcd(t_k, t_{k+1}) = k+1$. Assume that k is even and set k = 2j, where $j \in \mathbb{N}$. Then $t_k = j(2j+1)$ and $t_{k+1} = (2j+1)(j+1)$. Since gcd(j, j+1) = 1, by Lemma1, we conclude that $gcd(t_k, t_{k+1}) = 2j + 1 = k + 1$. (Here is a proof that gcd(j, j+1) = 1. Set d = gcd(j, j+1). Then d|(j+1) and d|j. By Lemma 2, d = 1. Thus gcd(j, j+1) = 1.)

If k is odd, then $gcd(t_k, t_{k+1}) = (k+1)/2$. Assume that k is odd and set k = 2j - 1, where $j \in \mathbb{N}$. Then $t_k = (2j-1)j$ and $t_{k+1} = j(2j+1)$. Next I will prove that Since gcd(2j-1, 2j+1) = 1. Set d = gcd(2j-1, 2j+1). Then d|(2j-1) and d|(2j+1). Consequently, d|((2j+1) - (2j-1)), that is $d|_2$. Hence d = 1 or d = 2. Since 2j + 1 is odd, 2 does not divide 2j + 1. Since d|(2j+1) we conclude $d \neq 2$. Therefore, d = 1. By Lemma1, since gcd(2j-1, 2j+1) = 1 we have gcd((2j-1)j, (2j+1)j) = j. Since $t_k = (2j-1)j, t_{k+1} = j(2j+1)$ and j = (k+1)/2, the claim is proved.

Problem 3. Let a and b be nonzero integers. Prove that a and b are relatively prime if and only if there exists an integer c such that a|c and b|(c+1).

Proof. Assume that a and b are relatively prime. Then gcd(a, b) = 1. By Theorem 2.1.3 there exist $x, y \in \mathbb{Z}$ such that ax + by = 1. Set c = -ax. Then, a|c. Also, by = 1 - ax = 1 + c. Therefore b|(c+1). This proves the existence of $c \in \mathbb{Z}$ such that a|c and b|(c+1).

Assume that there exists $c \in \mathbb{Z}$ such that a|c and b|(c+1). Let $d = \gcd(a, b)$. Then d is a positive number and d|a and d|b. Since a|c and b|(c+1), we conclude that d|c and d|(c+1). By Lemma 2 we deduce that d = 1. Thus, a and b are relatively prime.

Problem 4. Let a and b be integers, not both zero. Let d = gcd(a, b). Prove that $\text{gcd}(a^2, b^2) = d^2$. (Hint: First consider the special case of relatively prime integers a and b.)

Proof. Let a and b be integers, not both zero. Assume that gcd(a, b) = 1. Set $g = gcd(a^2, b^2)$. I need to prove that g = 1. (I will use Michael's brilliant idea here.) By Theorem 2.1.3 there exist integers x and y such that ax + by = 1. Now do some algebra

$$1 = 1^{3} = (ax + by)^{3} = a^{3}x^{3} + 3a^{2}x^{2}by + 3axb^{2}y^{2} + b^{3}y^{3} = a^{2}(ax^{3} + 3x^{2}by) + b^{2}(3axb^{2}y^{2} + by^{3}).$$

Set $u = ax^3 + 3x^2by$ and $v = 3axb^2y^2 + by^3$. Thus $a^2u + b^2v = 1$. Since $g = gcd(a^2, b^2)$, there exist $s, t \in \mathbb{Z}$ such that $a^2 = gs$ and $b^2 = gt$. Hence

$$1 = a^2u + b^2v = gsu + gtv = g(su + tv),$$

that is g|1. Since g > 0 we conclude g = 1. This completes the first part of the proof.

Now assume that d = gcd(a, b) > 1. Then there exist $j, k \in \mathbb{Z}$ such that a = dj and b = dk. By Proposition 2.2.5 it follows that gcd(j, k) = 1. By the first part of this proof it follows that $\text{gcd}(j^2, k^2) = 1$. Since $a^2 = d^2j^2$ and $b^2 = d^2k^2$ and since j^2 and k^2 are relatively prime, Lemma 1 implies that

$$gcd(a^2, b^2) = gcd(d^2j^2, d^2k^2) = d^2.$$

Problem 5. Let a and b be positive integers. Prove that $(b^2)|(a^2)$ if and only if b|a.

Proof. Assume first that b|a. Then there exists $u \in \mathbb{Z}$ such that a = bu. Then $a^2 = b^2 u^2$. Since $u^2 \in \mathbb{Z}$ and $b^2 > 0$, this means $(b^2)|(a^2)$.

Now assume that $(b^2)|(a^2)$. Set $d = \gcd(a, b)$. Then by Problem 4, $\gcd(a^2, b^2) = d^2$. But, since $(b^2)|(a^2)$, we know that $\gcd(a^2, b^2) = b^2$. Hence $d^2 = b^2$, that is

$$0 = d^2 - b^2 = (d - b)(d + b).$$

Since b > 0 and d > 0 we have d+b > 0. Therefore, d-b = 0, that is d = b. Since d|a we conclude that b|a.