The Fundamental Theorem of Arithmetic

In this post I prove Proposition 2.3.1 and Theorem 2.3.2.
Proposition 1. Let $a \in \mathbb{Z}$ and $a>1$. Then the set

$$
S=\{x \in \mathbb{Z}: x \mid a \quad \text { and } \quad x>1\}
$$

has a minimum and that minimum is a prime.
Proof. Clearly $S \subseteq \mathbb{Z}$. Since $a>1$ and $a \mid a$ we have that $a \in S$. Hence $S \neq \emptyset$. Clearly S is bounded below by 1. By the Well Ordering Axiom $\min S$ exists. Set $d=\min S$. Next we will prove the following statement:

Let $y \in S$. If y is composite, then $d<y$.
Here is a proof. Assume that $y \in S$ and $y=u v$ with $u>1$ and $v>1$. Multiplying $v>1$ by u we get $y=u v>u$. Since $u \mid y$ and $y \mid a$, we have $u \mid a$. Thus $u \in S$ and hence $d \leq u$. Since $u<y$, this proves that $d<y$.

The following statement is the contrapositive of the statement (1):
Let $y \in S$. If $y=d$, then y is a prime.
This proves that $\min S$ is a prime.
Definition 2. For an integer a such that $a>1$ the prime min S from Proposition 1 is called the least prime divisor of a. It is denoted by $\operatorname{lpd}(a)$.

Proposition 3. Let $a \in \mathbb{Z}$ and $a>1$. Let $y \in \mathbb{Z}$ be such that $1 \leq y<a$ and $y \mid a$. Then there exists $q \in \mathbb{P}$ such that $(y q) \mid a$.

Proof. Since $y \mid a$ there exists $b \in \mathbb{Z}$ such that $a=y b$. Since $a=y b>y$ and $y \geq 1$, we conclude $b>1$. Let $q=\operatorname{lpd}(b)$. Then $q \in \mathbb{P}$ and there exists $j \in \mathbb{Z}$ such that $b=q j$. Consequently $a=y b=y q j$. Hence $(y q) \mid a$.

Theorem 4. Let $a \in \mathbb{Z}$ and $a>1$. Then a is a prime or a product of primes.

Proof. Consider the set

$$
T=\{x \in \mathbb{Z}: x \mid a \quad \text { and } \quad x \text { is a prime or a product of primes }\} .
$$

Clearly $T \subseteq \mathbb{Z}$. Also, clearly $\operatorname{lpd}(a) \in T$. Hence $T \neq \emptyset$. Let $x \in T$. Then there exists $k \in \mathbb{Z}$ such that $a=x k$. Since $a>1$ and $x>1$ we conclude
$k \geq 1$. Multiplying the last inequality by $x>1$ we get $a=k x \geq x$. Hence T is bounded above by a. By the Well Ordering Axiom max T exists.

Next we will prove the following statement:

$$
\begin{equation*}
\text { Let } y \in T \text {. If } y<a \text {, then } y<\max T \tag{2}
\end{equation*}
$$

Here is a proof. Assume that $y \in T$ and $y<a$. Then also $y>1$ and by Proposition 3 there exist $q \in \mathbb{P}$ such that $(y q) \mid a$. Since $y \in T, y$ is a prime or a product of primes. Therefore $y q$ is a product of primes. Consequently $y q \in T$ and thus $y q \leq \max T$. Since $q \in \mathbb{P}, 1<q$. Thus $y<y q \leq \max T$. This proves $y<\max T$.

The contrapositive of the statement (2) is:

$$
\text { Let } y \in T . \text { If } y=\max T \text {, then } y=a
$$

Thus $a=\max T$. In particular $a \in T$. Therefore a is a prime or a product of primes.

The English phrase " a is a prime or a product of primes" can be formally expressed as: There exist $m \in \mathbb{N}$ and $p_{1}, \ldots, p_{m} \in \mathbb{P}$ such that

$$
a=p_{1} \cdots p_{m}=\prod_{j=1}^{m} p_{j}
$$

Lemma 5. Let $m \in \mathbb{N}$ and let p_{1}, \ldots, p_{m} be primes such that $p_{1} \leq p_{2} \leq$ $\cdots \leq p_{m}$ and $a=p_{1} \cdots p_{m}$. Then $\operatorname{lpd}(a)=p_{1}$.

Proof. Set $d=\operatorname{lpd}(a)$. Then d is prime and $d \mid a$. Since $a=p_{1} \cdots p_{m}$, Proposition 2.2.8 implies that there exists $j \in\{1, \ldots, m\}$ such that $d \mid p_{j}$. Since d and p_{j} are primes, we have $d=p_{j}$. Since d is the smallest prime divisor of a and $p_{1} \mid a$, we have $d \leq p_{1}$. Hence $d \leq p_{1} \leq p_{j}=d$. The last relation implies $d=p_{1}=p_{j}$.

Lemma 6. Let $n \in \mathbb{N}$ and let q_{1}, \ldots, q_{n} be primes such that $q_{1} \leq q_{2} \leq \cdots \leq$ q_{n} and $a=q_{1} \cdots q_{n}$. Let $m \in \mathbb{N}$ be such that $m \leq n$. If $q_{1} \cdots q_{m}=a$, then $m=n$.

Proof. It is easier to prove the contrapositive of the last implication: If $m<n$, then $q_{1} \cdots q_{m}<a$. This is almost trivial, but here is a proof. Since q_{m+1}, \ldots, q_{n} are primes, their product is greater than $1: q_{m+1} \cdots q_{n}>1$. Multiplying the last inequality by $q_{1} \cdots q_{m}>1$ we get

$$
a=q_{1} \cdots q_{m} q_{m+1} \cdots q_{n}>q_{1} \cdots q_{m}
$$

Theorem 7. Let $m, n \in \mathbb{N}$ be such that $m \leq n$. Let p_{1}, \ldots, p_{m} and q_{1}, \ldots, q_{n} be primes such that

$$
\begin{align*}
p_{1} \leq p_{2} \leq \cdots \leq p_{m} & \text { and } \tag{3}\\
q_{1} \leq q_{2} \leq \cdots \leq q_{n} & \text { and } \tag{4}
\end{align*} \quad a=p_{1} \cdots p_{m}, \cdots q_{n}
$$

Then $m=n$ and $p_{1}=q_{1}, p_{2}=q_{2}, \ldots, p_{m}=q_{m}$.
Proof. Lemma 5 and the assumption (3) imply that $\operatorname{lpd}(a)=p_{1}$. Lemma 5 and the assumption (4) imply that $\operatorname{lpd}(a)=q_{1}$. Therefore $p_{1}=q_{1}$. Since

$$
a=p_{1} \cdots p_{m}=q_{1} \cdots q_{n}
$$

the equality $p_{1}=q_{1}$ implies

$$
p_{2} \cdots p_{m}=q_{2} \cdots q_{n}
$$

Set

$$
a_{1}=p_{2} \cdots p_{m}=q_{2} \cdots q_{n}
$$

Now Lemma 5 applied twice to the number a_{1} implies

$$
\operatorname{lpd}\left(a_{1}\right)=p_{2} \quad \text { and } \quad \operatorname{lpd}\left(a_{1}\right)=q_{2}
$$

Therefore $p_{2}=q_{2}$. Repeating this process $m-2$ more times we get

$$
p_{1}=q_{1}, \quad p_{2}=q_{2}, \quad \ldots, \quad p_{m}=q_{m}
$$

Since $a=p_{1} \cdots p_{m}$, it follows that $a=q_{1} \cdots q_{m}$. Now, Lemma 6 implies $m=n$.

Example 8. Let $a=4688133359$. Since

$$
4688133359=7 \cdot 7 \cdot 13 \cdot 19 \cdot 19 \cdot 19 \cdot 29 \cdot 37
$$

in the representation $a=p_{1} \cdots p_{m}$ where p_{1}, \ldots, p_{m} are primes such that $p_{1} \leq p_{2} \leq \cdots \leq p_{m}$ we have $m=8$ and

$$
p_{1}=7, p_{2}=7, p_{3}=13, p_{4}=19, p_{5}=19, p_{6}=19, p_{7}=29, p_{8}=37
$$

The canonical form of 4688133359 is $7^{2} \cdot 13 \cdot 19^{3} \cdot 29 \cdot 37$.

