
The Fundamental Theorem of Arithmetic

In this post I prove Proposition 2.3.1 and Theorem 2.3.2.

Proposition 1. Let a ∈ Z and a > 1. Then the set

S =
{

x ∈ Z : x|a and x > 1
}

has a minimum and that minimum is a prime.

Proof. Clearly S ⊆ Z. Since a > 1 and a|a we have that a ∈ S. Hence
S 6= ∅. Clearly S is bounded below by 1. By the Well Ordering Axiom
min S exists. Set d = minS. Next we will prove the following statement:

Let y ∈ S. If y is composite, then d < y. (1)

Here is a proof. Assume that y ∈ S and y = uv with u > 1 and v > 1.
Multiplying v > 1 by u we get y = uv > u. Since u|y and y|a, we have u|a.
Thus u ∈ S and hence d ≤ u. Since u < y, this proves that d < y.

The following statement is the contrapositive of the statement (1):

Let y ∈ S. If y = d, then y is a prime.

This proves that min S is a prime.

Definition 2. For an integer a such that a > 1 the prime min S from
Proposition 1 is called the least prime divisor of a. It is denoted by lpd(a).

Proposition 3. Let a ∈ Z and a > 1. Let y ∈ Z be such that 1 ≤ y < a

and y | a. Then there exists q ∈ P such that (yq) | a.

Proof. Since y | a there exists b ∈ Z such that a = yb. Since a = yb > y and
y ≥ 1, we conclude b > 1. Let q = lpd(b). Then q ∈ P and there exists j ∈ Z

such that b = qj. Consequently a = yb = yqj. Hence (yq)|a.

Theorem 4. Let a ∈ Z and a > 1. Then a is a prime or a product of
primes.

Proof. Consider the set

T =
{

x ∈ Z : x|a and x is a prime or a product of primes
}

.

Clearly T ⊆ Z. Also, clearly lpd(a) ∈ T . Hence T 6= ∅. Let x ∈ T . Then
there exists k ∈ Z such that a = xk. Since a > 1 and x > 1 we conclude
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k ≥ 1. Multiplying the last inequality by x > 1 we get a = kx ≥ x. Hence
T is bounded above by a. By the Well Ordering Axiom maxT exists.

Next we will prove the following statement:

Let y ∈ T . If y < a, then y < max T . (2)

Here is a proof. Assume that y ∈ T and y < a. Then also y > 1 and by
Proposition 3 there exist q ∈ P such that (yq)|a. Since y ∈ T , y is a prime
or a product of primes. Therefore yq is a product of primes. Consequently
yq ∈ T and thus yq ≤ maxT . Since q ∈ P, 1 < q. Thus y < yq ≤ maxT .
This proves y < maxT .

The contrapositive of the statement (2) is:

Let y ∈ T . If y = maxT , then y = a.

Thus a = maxT . In particular a ∈ T . Therefore a is a prime or a product
of primes.

The English phrase “a is a prime or a product of primes” can be formally
expressed as: There exist m ∈ N and p1, . . . , pm ∈ P such that

a = p1 · · · pm =

m
∏

j=1

pj.

Lemma 5. Let m ∈ N and let p1, . . . , pm be primes such that p1 ≤ p2 ≤
· · · ≤ pm and a = p1 · · · pm. Then lpd(a) = p1.

Proof. Set d = lpd(a). Then d is prime and d|a. Since a = p1 · · · pm,
Proposition 2.2.8 implies that there exists j ∈ {1, . . . ,m} such that d|pj .
Since d and pj are primes, we have d = pj. Since d is the smallest prime
divisor of a and p1|a, we have d ≤ p1. Hence d ≤ p1 ≤ pj = d. The last
relation implies d = p1 = pj .

Lemma 6. Let n ∈ N and let q1, . . . , qn be primes such that q1 ≤ q2 ≤ · · · ≤
qn and a = q1 · · · qn. Let m ∈ N be such that m ≤ n. If q1 · · · qm = a, then
m = n.

Proof. It is easier to prove the contrapositive of the last implication: If
m < n, then q1 · · · qm < a. This is almost trivial, but here is a proof. Since
qm+1, . . . , qn are primes, their product is greater than 1: qm+1 · · · qn > 1.
Multiplying the last inequality by q1 · · · qm > 1 we get

a = q1 · · · qmqm+1 · · · qn > q1 · · · qm.
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Theorem 7. Let m,n ∈ N be such that m ≤ n. Let p1, . . . , pm and
q1, . . . , qn be primes such that

p1 ≤ p2 ≤ · · · ≤ pm and a = p1 · · · pm, (3)

q1 ≤ q2 ≤ · · · ≤ qn and a = q1 · · · qn. (4)

Then m = n and p1 = q1, p2 = q2, . . . , pm = qm.

Proof. Lemma 5 and the assumption (3) imply that lpd(a) = p1. Lemma 5
and the assumption (4) imply that lpd(a) = q1. Therefore p1 = q1. Since

a = p1 · · · pm = q1 · · · qn,

the equality p1 = q1 implies

p2 · · · pm = q2 · · · qn.

Set
a1 = p2 · · · pm = q2 · · · qn.

Now Lemma 5 applied twice to the number a1 implies

lpd(a1) = p2 and lpd(a1) = q2.

Therefore p2 = q2. Repeating this process m − 2 more times we get

p1 = q1, p2 = q2, . . . , pm = qm.

Since a = p1 · · · pm, it follows that a = q1 · · · qm. Now, Lemma 6 implies
m = n.

Example 8. Let a = 4688133359. Since

4688133359 = 7 · 7 · 13 · 19 · 19 · 19 · 29 · 37

in the representation a = p1 · · · pm where p1, . . . , pm are primes such that
p1 ≤ p2 ≤ · · · ≤ pm we have m = 8 and

p1 = 7, p2 = 7, p3 = 13, p4 = 19, p5 = 19, p6 = 19, p7 = 29, p8 = 37.

The canonical form of 4688133359 is 72 · 13 · 193 · 29 · 37.
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