The Fundamental Theorem of Arithmetic

In this post I prove Proposition 2.3.1 and Theorem 2.3.2.

Proposition 1. Let $a \in \mathbb{Z}$ and a > 1. Then the set

$$S = \{ x \in \mathbb{Z} : x | a \text{ and } x > 1 \}$$

has a minimum and that minimum is a prime.

Proof. Clearly $S \subseteq \mathbb{Z}$. Since a > 1 and a|a we have that $a \in S$. Hence $S \neq \emptyset$. Clearly S is bounded below by 1. By the Well Ordering Axiom min S exists. Set $d = \min S$. Next we will prove the following statement:

Let
$$y \in S$$
. If y is composite, then $d < y$. (1)

Here is a proof. Assume that $y \in S$ and y = uv with u > 1 and v > 1. Multiplying v > 1 by u we get y = uv > u. Since u|y and y|a, we have u|a. Thus $u \in S$ and hence $d \leq u$. Since u < y, this proves that d < y.

The following statement is the contrapositive of the statement (1):

Let
$$y \in S$$
. If $y = d$, then y is a prime.

This proves that $\min S$ is a prime.

Definition 2. For an integer a such that a > 1 the prime min S from Proposition 1 is called the *least prime divisor of a*. It is denoted by lpd(a).

Proposition 3. Let $a \in \mathbb{Z}$ and a > 1. Let $y \in \mathbb{Z}$ be such that $1 \leq y < a$ and $y \mid a$. Then there exists $q \in \mathbb{P}$ such that $(yq) \mid a$.

Proof. Since $y \mid a$ there exists $b \in \mathbb{Z}$ such that a = yb. Since a = yb > y and $y \ge 1$, we conclude b > 1. Let $q = \operatorname{lpd}(b)$. Then $q \in \mathbb{P}$ and there exists $j \in \mathbb{Z}$ such that b = qj. Consequently a = yb = yqj. Hence $(yq)\mid a$.

Theorem 4. Let $a \in \mathbb{Z}$ and a > 1. Then a is a prime or a product of primes.

Proof. Consider the set

 $T = \big\{ x \in \mathbb{Z} \, : \, x | a \quad \text{and} \quad x \text{ is a prime or a product of primes} \big\}.$

Clearly $T \subseteq \mathbb{Z}$. Also, clearly $\operatorname{lpd}(a) \in T$. Hence $T \neq \emptyset$. Let $x \in T$. Then there exists $k \in \mathbb{Z}$ such that a = xk. Since a > 1 and x > 1 we conclude

 $k \ge 1$. Multiplying the last inequality by x > 1 we get $a = kx \ge x$. Hence T is bounded above by a. By the Well Ordering Axiom max T exists.

Next we will prove the following statement:

Let
$$y \in T$$
. If $y < a$, then $y < \max T$. (2)

Here is a proof. Assume that $y \in T$ and y < a. Then also y > 1 and by Proposition 3 there exist $q \in \mathbb{P}$ such that (yq)|a. Since $y \in T$, y is a prime or a product of primes. Therefore yq is a product of primes. Consequently $yq \in T$ and thus $yq \leq \max T$. Since $q \in \mathbb{P}$, 1 < q. Thus $y < yq \leq \max T$. This proves $y < \max T$.

The contrapositive of the statement (2) is:

Let
$$y \in T$$
. If $y = \max T$, then $y = a$.

Thus $a = \max T$. In particular $a \in T$. Therefore a is a prime or a product of primes.

The English phrase "a is a prime or a product of primes" can be formally expressed as: There exist $m \in \mathbb{N}$ and $p_1, \ldots, p_m \in \mathbb{P}$ such that

$$a = p_1 \cdots p_m = \prod_{j=1}^m p_j.$$

Lemma 5. Let $m \in \mathbb{N}$ and let p_1, \ldots, p_m be primes such that $p_1 \leq p_2 \leq \cdots \leq p_m$ and $a = p_1 \cdots p_m$. Then $lpd(a) = p_1$.

Proof. Set d = lpd(a). Then d is prime and d|a. Since $a = p_1 \cdots p_m$, Proposition 2.2.8 implies that there exists $j \in \{1, \ldots, m\}$ such that $d|p_j$. Since d and p_j are primes, we have $d = p_j$. Since d is the smallest prime divisor of a and $p_1|a$, we have $d \leq p_1$. Hence $d \leq p_1 \leq p_j = d$. The last relation implies $d = p_1 = p_j$.

Lemma 6. Let $n \in \mathbb{N}$ and let q_1, \ldots, q_n be primes such that $q_1 \leq q_2 \leq \cdots \leq q_n$ and $a = q_1 \cdots q_n$. Let $m \in \mathbb{N}$ be such that $m \leq n$. If $q_1 \cdots q_m = a$, then m = n.

Proof. It is easier to prove the contrapositive of the last implication: If m < n, then $q_1 \cdots q_m < a$. This is almost trivial, but here is a proof. Since q_{m+1}, \ldots, q_n are primes, their product is greater than 1: $q_{m+1} \cdots q_n > 1$. Multiplying the last inequality by $q_1 \cdots q_m > 1$ we get

$$a = q_1 \cdots q_m q_{m+1} \cdots q_n > q_1 \cdots q_m.$$

Theorem 7. Let $m, n \in \mathbb{N}$ be such that $m \leq n$. Let p_1, \ldots, p_m and q_1, \ldots, q_n be primes such that

$$p_1 \le p_2 \le \dots \le p_m$$
 and $a = p_1 \dots p_m$, (3)

$$q_1 \le q_2 \le \dots \le q_n$$
 and $a = q_1 \dots q_n$. (4)

Then m = n and $p_1 = q_1, p_2 = q_2, \dots, p_m = q_m$.

Proof. Lemma 5 and the assumption (3) imply that $lpd(a) = p_1$. Lemma 5 and the assumption (4) imply that $lpd(a) = q_1$. Therefore $p_1 = q_1$. Since

$$a = p_1 \cdots p_m = q_1 \cdots q_n,$$

the equality $p_1 = q_1$ implies

$$p_2 \cdots p_m = q_2 \cdots q_n.$$

 Set

$$a_1 = p_2 \cdots p_m = q_2 \cdots q_n$$

Now Lemma 5 applied twice to the number a_1 implies

$$\operatorname{lpd}(a_1) = p_2$$
 and $\operatorname{lpd}(a_1) = q_2$.

Therefore $p_2 = q_2$. Repeating this process m - 2 more times we get

$$p_1 = q_1, \quad p_2 = q_2, \quad \dots, \quad p_m = q_m.$$

Since $a = p_1 \cdots p_m$, it follows that $a = q_1 \cdots q_m$. Now, Lemma 6 implies m = n.

Example 8. Let a = 4688133359. Since

$$4688133359 = 7 \cdot 7 \cdot 13 \cdot 19 \cdot 19 \cdot 19 \cdot 29 \cdot 37$$

in the representation $a = p_1 \cdots p_m$ where p_1, \ldots, p_m are primes such that $p_1 \leq p_2 \leq \cdots \leq p_m$ we have m = 8 and

$$p_1 = 7, p_2 = 7, p_3 = 13, p_4 = 19, p_5 = 19, p_6 = 19, p_7 = 29, p_8 = 37.$$

The canonical form of 4688133359 is $7^2 \cdot 13 \cdot 19^3 \cdot 29 \cdot 37$.