
A system of two congruences

The following lemma follows easily from Proposition 2.2.3.

Lemma 1. Let a and b be integers and let n1 and n2 be relatively prime positive integers. Then

a ≡ b (mod n1) and a ≡ b (mod n2), (1)

if and only if

a ≡ b (mod n1n2). (2)

Proof. The implication (2) ⇒ (1) is clear. Now assume (1). Then n1|(b− a) and n2|(b− a). Since
n1 and n2 be relatively prime, by Proposition 2.2.3 we have (n1n2)|(b − a). Hence (2) holds. The
lemma is proved.

Let a1 and a2 be integers and let n1 and n2 be relatively prime positive integers. Given two
congruences

x ≡ a1 (mod n1) and x ≡ a2 (mod n2), (3)

we want to find an integer c and a positive integer m such that x satisfies (3) if and only if x

satisfies
x ≡ c (mod m). (4)

Since n1 and n2 are relatively prime integers, by Proposition 3.3.2 there exist integers b1 and
b2 such that

b1n2 ≡ 1 (mod n1) and b2n1 ≡ 1 (mod n2). (5)

Now assume (3) and proceed to construct c and m. From (3) and (5) we have

x ≡ a1 (mod n1) and b1n2 ≡ 1 (mod n1),

and consequently
x ≡ a1b1n2 (mod n1).

Since clearly
0 ≡ a2b2n1 (mod n1),

we conclude that
x ≡ a1b1n2 + a2b2n1 (mod n1). (6)

Similarly from (3) and (5) we have

x ≡ a2 (mod n2) and b2n1 ≡ 1 (mod n2),

and consequently
x ≡ a2b2n1 (mod n2).

Since also
0 ≡ a1b1n2 (mod n2),

we conclude that
x ≡ a1b1n2 + a2b2n1 (mod n2). (7)
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Since n1 and n2 are relatively prime integers, Lemma 1 and congruences (6) and (7) yield

x ≡ a1b1n2 + a2b2n1 (mod n1n2). (8)

Now set c = a1b1n2 + a2b2n1 and m = n1n2. With these c and m we proved that (3) implies (4).

Next we prove that (8) implies (3). Assume (8). Then, by Lemma 1,

x ≡ a1b1n2 + a2b2n1n1 (mod n1) and x ≡ a1b1n2 + a2b2n1n1 (mod n2),

Since clearly

0 ≡ a2b2n1 (mod n1) and 0 ≡ a1b1n2 (mod n2),

we get

x ≡ a1b1n2 (mod n1) and x ≡ a2b2n1 (mod n2).

Now congruences in (5) imply

a1 ≡ a1b1n2 (mod n1) and a2 ≡ a2b2n1 (mod n2).

Therefore,

x ≡ a1 (mod n1) and x ≡ a2 (mod n2),

and (3) is proved.

A system of several congruences

Next we will replace two congruences with r congruences. Here r is a positive integer with
r > 1. Before proceeding with this proof we prove two lemmas.

Lemma 2. Let n1, n2, . . . , nr and s be positive integers. If gcd(nj , s) = 1 for all j = 1, 2, . . . , r,
then

gcd(n1n2 · · ·nr, s) = 1.

Proof. The contrapositive is easier to prove. Assume that gcd(n1n2 · · ·nr, s) > 1. Then there
exists a prime p such that

p | gcd(n1n2 · · ·nr, s).

Since p divides a common divisor of n1n2 · · ·nr and s, we conclude that

p | (n1n2 · · ·nr) and p |s.

By Proposition 2.2.8 there exists k ∈ {1, 2, . . . , r} such that p |nk. Hence, p | gcd(nk, s) and
consequently gcd(nk, s) > 1. Thus, there exists k ∈ {1, 2, . . . , r} such that gcd(nk, s) > 1.
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Lemma 3. Let a and b be integers and let n1, n2, . . . , nr be positive integers each two of which are

relatively prime. Then

a ≡ b (mod n1), a ≡ b (mod n2), . . . , a ≡ b (mod nr),

if and only if

a ≡ b (mod n1n2 · · ·nr).

Let a1, a2, . . . , ar be integers and let n1, n2, . . . , nr be positive integers each two of which are
relatively prime. That is gcd(nj, nk) = 1 whenever j 6= k and j, k ∈ {1, 2, . . . , r}. Given r

congruences

x ≡ a1 (mod n1), x ≡ a2 (mod n2), . . . , x ≡ ar (mod nr), (9)

we want to find an integer c and a positive integer m such that x satisfies (9) if and only if x

satisfies
x ≡ c (mod m). (10)

We introduce the following notation

m = n1n2 · · ·nr, mj =
m

nj

, j = 1, 2, . . . , r.

That is, m is the product of all integers n1, n2, . . . , nr and mj is the product of r − 1 integers;
namely the integer nj is skipped in this product. Let j be an arbitrary integer in {1, 2, . . . , r}.
Then, by definition m = mjnj . Since gcd(nj , nk) = 1 for all k ∈ {1, 2, . . . , r} such that k 6= j, by
Lemma 2 we have that

gcd(mj, nj) = 1.

By the definition of mj we have

nk |mj for all k ∈ {1, 2, . . . , r} such that k 6= j.

We proceed similarly as in the case of two congruences. Since nj and mj are relatively prime
integers, by Proposition 3.3.2 there exist integers bj such that

bjmj ≡ 1 (mod nj) (11)

Now assume (9) and proceed to construct c and m. From (9) and (11) we have

x ≡ aj (mod nj) and bjmj ≡ 1 (mod nj),

and consequently

x ≡ ajbjmj (mod nj)

For k ∈ {1, 2, . . . , r} such that k 6= j we have nj |mk. Therefore

0 ≡ akbkmk (mod nj), k ∈ {1, 2, . . . , r}, k 6= j.
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The last displayed relations contain r congruences. Adding these r congruences we get

x ≡ a1b1m1 + a2b2m2 + · · ·+ arbrmr (mod nj).

Now set c = a1b1m1 + a2b2m2 + · · ·+ arbrmr. Thus we proved

x ≡ c (mod nj).

Since j ∈ {1, 2, . . . , r} was arbitrary we have

x ≡ c (mod nj) for all j ∈ {1, 2, . . . , r}.

Now Lemma 3 implies
x ≡ c (mod m).

This proves that (9) implies (10).
A proof that (10) implies (9) is left as an exercise.
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