A system of two congruences

The following lemma follows easily from Proposition 2.2.3.
Lemma 1. Let a and b be integers and let n_{1} and n_{2} be relatively prime positive integers. Then

$$
\begin{equation*}
a \equiv b\left(\bmod n_{1}\right) \quad \text { and } \quad a \equiv b\left(\bmod n_{2}\right) \tag{1}
\end{equation*}
$$

if and only if

$$
\begin{equation*}
a \equiv b\left(\bmod n_{1} n_{2}\right) \tag{2}
\end{equation*}
$$

Proof. The implication $(2) \Rightarrow(1)$ is clear. Now assume (1). Then $n_{1} \mid(b-a)$ and $n_{2} \mid(b-a)$. Since n_{1} and n_{2} be relatively prime, by Proposition 2.2 .3 we have $\left(n_{1} n_{2}\right) \mid(b-a)$. Hence (2) holds. The lemma is proved.

Let a_{1} and a_{2} be integers and let n_{1} and n_{2} be relatively prime positive integers. Given two congruences

$$
\begin{equation*}
x \equiv a_{1}\left(\bmod n_{1}\right) \quad \text { and } \quad x \equiv a_{2}\left(\bmod n_{2}\right) \tag{3}
\end{equation*}
$$

we want to find an integer c and a positive integer m such that x satisfies (3) if and only if x satisfies

$$
\begin{equation*}
x \equiv c(\bmod m) \tag{4}
\end{equation*}
$$

Since n_{1} and n_{2} are relatively prime integers, by Proposition 3.3.2 there exist integers b_{1} and b_{2} such that

$$
\begin{equation*}
b_{1} n_{2} \equiv 1\left(\bmod n_{1}\right) \quad \text { and } \quad b_{2} n_{1} \equiv 1\left(\bmod n_{2}\right) \tag{5}
\end{equation*}
$$

Now assume (3) and proceed to construct c and m. From (3) and (5) we have

$$
x \equiv a_{1}\left(\bmod n_{1}\right) \quad \text { and } \quad b_{1} n_{2} \equiv 1\left(\bmod n_{1}\right),
$$

and consequently

$$
x \equiv a_{1} b_{1} n_{2}\left(\bmod n_{1}\right) .
$$

Since clearly

$$
0 \equiv a_{2} b_{2} n_{1}\left(\bmod n_{1}\right),
$$

we conclude that

$$
\begin{equation*}
x \equiv a_{1} b_{1} n_{2}+a_{2} b_{2} n_{1}\left(\bmod n_{1}\right) \tag{6}
\end{equation*}
$$

Similarly from (3) and (5) we have

$$
x \equiv a_{2}\left(\bmod n_{2}\right) \quad \text { and } \quad b_{2} n_{1} \equiv 1\left(\bmod n_{2}\right)
$$

and consequently

$$
x \equiv a_{2} b_{2} n_{1}\left(\bmod n_{2}\right) .
$$

Since also

$$
0 \equiv a_{1} b_{1} n_{2}\left(\bmod n_{2}\right),
$$

we conclude that

$$
\begin{equation*}
x \equiv a_{1} b_{1} n_{2}+a_{2} b_{2} n_{1}\left(\bmod n_{2}\right) \tag{7}
\end{equation*}
$$

Since n_{1} and n_{2} are relatively prime integers, Lemma 1 and congruences (6) and (7) yield

$$
\begin{equation*}
x \equiv a_{1} b_{1} n_{2}+a_{2} b_{2} n_{1}\left(\bmod n_{1} n_{2}\right) \tag{8}
\end{equation*}
$$

Now set $c=a_{1} b_{1} n_{2}+a_{2} b_{2} n_{1}$ and $m=n_{1} n_{2}$. With these c and m we proved that (3) implies (4).
Next we prove that (8) implies (3). Assume (8). Then, by Lemma 1,

$$
x \equiv a_{1} b_{1} n_{2}+a_{2} b_{2} n_{1} n_{1}\left(\bmod n_{1}\right) \quad \text { and } \quad x \equiv a_{1} b_{1} n_{2}+a_{2} b_{2} n_{1} n_{1}\left(\bmod n_{2}\right),
$$

Since clearly

$$
0 \equiv a_{2} b_{2} n_{1}\left(\bmod n_{1}\right) \quad \text { and } \quad 0 \equiv a_{1} b_{1} n_{2}\left(\bmod n_{2}\right)
$$

we get

$$
x \equiv a_{1} b_{1} n_{2}\left(\bmod n_{1}\right) \quad \text { and } \quad x \equiv a_{2} b_{2} n_{1}\left(\bmod n_{2}\right)
$$

Now congruences in (5) imply

$$
a_{1} \equiv a_{1} b_{1} n_{2}\left(\bmod n_{1}\right) \quad \text { and } \quad a_{2} \equiv a_{2} b_{2} n_{1}\left(\bmod n_{2}\right)
$$

Therefore,

$$
x \equiv a_{1}\left(\bmod n_{1}\right) \quad \text { and } \quad x \equiv a_{2}\left(\bmod n_{2}\right)
$$

and (3) is proved.

A system of several congruences

Next we will replace two congruences with r congruences. Here r is a positive integer with $r>1$. Before proceeding with this proof we prove two lemmas.

Lemma 2. Let $n_{1}, n_{2}, \ldots, n_{r}$ and s be positive integers. If $\operatorname{gcd}\left(n_{j}, s\right)=1$ for all $j=1,2, \ldots, r$, then

$$
\operatorname{gcd}\left(n_{1} n_{2} \cdots n_{r}, s\right)=1
$$

Proof. The contrapositive is easier to prove. Assume that $\operatorname{gcd}\left(n_{1} n_{2} \cdots n_{r}, s\right)>1$. Then there exists a prime p such that

$$
p \mid \operatorname{gcd}\left(n_{1} n_{2} \cdots n_{r}, s\right)
$$

Since p divides a common divisor of $n_{1} n_{2} \cdots n_{r}$ and s, we conclude that

$$
p \mid\left(n_{1} n_{2} \cdots n_{r}\right) \quad \text { and } \quad p \mid s
$$

By Proposition 2.2 .8 there exists $k \in\{1,2, \ldots, r\}$ such that $p \mid n_{k}$. Hence, $p \mid \operatorname{gcd}\left(n_{k}, s\right)$ and consequently $\operatorname{gcd}\left(n_{k}, s\right)>1$. Thus, there exists $k \in\{1,2, \ldots, r\}$ such that $\operatorname{gcd}\left(n_{k}, s\right)>1$.

Lemma 3. Let a and b be integers and let $n_{1}, n_{2}, \ldots, n_{r}$ be positive integers each two of which are relatively prime. Then

$$
a \equiv b\left(\bmod n_{1}\right), \quad a \equiv b\left(\bmod n_{2}\right), \quad \ldots, \quad a \equiv b\left(\bmod n_{r}\right),
$$

if and only if

$$
a \equiv b\left(\bmod n_{1} n_{2} \cdots n_{r}\right)
$$

Let $a_{1}, a_{2}, \ldots, a_{r}$ be integers and let $n_{1}, n_{2}, \ldots, n_{r}$ be positive integers each two of which are relatively prime. That is $\operatorname{gcd}\left(n_{j}, n_{k}\right)=1$ whenever $j \neq k$ and $j, k \in\{1,2, \ldots, r\}$. Given r congruences

$$
\begin{equation*}
x \equiv a_{1}\left(\bmod n_{1}\right), \quad x \equiv a_{2}\left(\bmod n_{2}\right), \quad \ldots, \quad x \equiv a_{r}\left(\bmod n_{r}\right) \tag{9}
\end{equation*}
$$

we want to find an integer c and a positive integer m such that x satisfies (9) if and only if x satisfies

$$
\begin{equation*}
x \equiv c(\bmod m) \tag{10}
\end{equation*}
$$

We introduce the following notation

$$
m=n_{1} n_{2} \cdots n_{r}, \quad m_{j}=\frac{m}{n_{j}}, \quad j=1,2, \ldots, r .
$$

That is, m is the product of all integers $n_{1}, n_{2}, \ldots, n_{r}$ and m_{j} is the product of $r-1$ integers; namely the integer n_{j} is skipped in this product. Let j be an arbitrary integer in $\{1,2, \ldots, r\}$. Then, by definition $m=m_{j} n_{j}$. Since $\operatorname{gcd}\left(n_{j}, n_{k}\right)=1$ for all $k \in\{1,2, \ldots, r\}$ such that $k \neq j$, by Lemma 2 we have that

$$
\operatorname{gcd}\left(m_{j}, n_{j}\right)=1
$$

By the definition of m_{j} we have

$$
n_{k} \mid m_{j} \quad \text { for all } k \in\{1,2, \ldots, r\} \quad \text { such that } \quad k \neq j .
$$

We proceed similarly as in the case of two congruences. Since n_{j} and m_{j} are relatively prime integers, by Proposition 3.3.2 there exist integers b_{j} such that

$$
\begin{equation*}
b_{j} m_{j} \equiv 1\left(\bmod n_{j}\right) \tag{11}
\end{equation*}
$$

Now assume (9) and proceed to construct c and m. From (9) and (11) we have

$$
x \equiv a_{j}\left(\bmod n_{j}\right) \quad \text { and } \quad b_{j} m_{j} \equiv 1\left(\bmod n_{j}\right)
$$

and consequently

$$
x \equiv a_{j} b_{j} m_{j}\left(\bmod n_{j}\right)
$$

For $k \in\{1,2, \ldots, r\}$ such that $k \neq j$ we have $n_{j} \mid m_{k}$. Therefore

$$
0 \equiv a_{k} b_{k} m_{k}\left(\bmod n_{j}\right), \quad k \in\{1,2, \ldots, r\}, \quad k \neq j
$$

The last displayed relations contain r congruences. Adding these r congruences we get

$$
x \equiv a_{1} b_{1} m_{1}+a_{2} b_{2} m_{2}+\cdots+a_{r} b_{r} m_{r}\left(\bmod n_{j}\right) .
$$

Now set $c=a_{1} b_{1} m_{1}+a_{2} b_{2} m_{2}+\cdots+a_{r} b_{r} m_{r}$. Thus we proved

$$
x \equiv c\left(\bmod n_{j}\right)
$$

Since $j \in\{1,2, \ldots, r\}$ was arbitrary we have

$$
x \equiv c\left(\bmod n_{j}\right) \quad \text { for all } \quad j \in\{1,2, \ldots, r\}
$$

Now Lemma 3 implies

$$
x \equiv c(\bmod m)
$$

This proves that (9) implies (10).
A proof that (10) implies (9) is left as an exercise.

