
Chapter 2

Divisibility

2.1 Common Divisors

Definition 2.1.1. Let a and b be integers. A common divisor of a and b is any integer that
divides both a and b. Suppose that a and b are not both zero. By Proposition 1.3.8, there exists
a greatest common divisor, which is positive. It is denoted by

gcd(a, b) .

Note that in the proof of Proposition 1.3.8 we proved that, for integers a and b which are
not both zero, the set S = {x ∈ Z : x | a, x | b} has a maximum. Thus,

gcd(a, b) = max{x ∈ Z : x | a, x | b} .

Example 2.1.2. The common divisors of 12 and 30 are: −6,−3,−2,−1, 1, 2, 3, 6. These are
also the common divisors of −12 and 30, and of 6 and 0. Hence,

gcd(12, 30) = gcd(−12, 30) = gcd(6, 0) = 6 .

Theorem 2.1.3.∗ Let a and b be integers, not both of which are zero. Then there exist integers
x and y such that

ax + by = gcd(a, b) .

Example 2.1.4. Verifying Theorem 2.1.3 in one case: 12(−2) + 30(1) = gcd(12, 30).

Proposition 2.1.5. Let a and b be integers, not both zero. Then any common divisor of a and
b is a divisor of gcd(a, b).

Definition 2.1.6. Let a and b be positive integers. By Proposition 1.3.9, there exists a least
common positive multiple of a and b. It is denoted by

lcm(a, b) .

It follows from the proof of Proposition 1.3.9 that for positive integers a and b

lcm(a, b) = min{x ∈ Z : x > 0, a | x, b | x} .
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Proposition 2.1.7. Let a and b be positive integers. Then any common multiple of a and b is
a multiple of lcm(a, b).

Proposition 2.1.8. Let a, b and d be positive integers. If d is a common divisor of a and b,
then ab/d is a common multiple of a and b.

Proposition 2.1.9. Let a, b and m be positive integers. If m is a common multiple of a and b
and m divides ab, then ab/m is a common divisor of a and b.

Proposition 2.1.10. If a and b are positive integers, then ab = gcd(a, b) · lcm(a, b).

2.2 Relatively Prime Integers

Definition 2.2.1. Let a and b be integers, not both zero. If gcd(a, b) = 1, then a and b are said
to be relatively prime. Notice that the only common divisors of relatively prime integers are 1
and −1.

Proposition 2.2.2. Let a and b be integers that are not relatively prime. Then there exists a
prime that divides both a and b.

Proposition 2.2.3. Let a and b be relatively prime positive integers and let c be an integer. If
a|c and b|c, then ab|c.

Lemma 2.2.4 (Euclid’s Lemma). Let a and b be relatively prime integers. If c is an integer
and a|bc, then a|c.

Proposition 2.2.5. Let a and b be integers, not both zero. If d = gcd(a, b), then a/d and b/d
are relatively prime.

Proposition 2.2.6. Let p be a prime and a an integer. If p does not divide a, then p and a are
relatively prime.

Theorem 2.2.7 (Euclid’s First Theorem). Let p be a prime and let a and b be integers. If p|ab,
then p|a or p|b.

Proposition 2.2.8.∗ Let a1, a2, . . . , an be integers and let a = a1a2 · · ·an. If p is a prime and p
divides a, then there exists k such that p divides ak.

Proposition 2.2.9. Let a1, a2, . . . , an be integers and let a = a1a2 · · ·an. If b is a nonzero
integer and b is relatively prime to each ak, then a and b are relatively prime.

Proposition 2.2.10. Let a1, a2, . . . , an be integers greater than 1 and let a = a1a2 · · ·an. Then
a + 1 is not divisible by any of the ak.

Theorem 2.2.11 (Euclid’s Second Theorem).∗ There exist infinitely many primes.
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2.3 Factoring Integers into Primes

Proposition 2.3.1. Let a be an integer greater than 1. Then there exists a positive integer n
and there exist primes p1, p2, . . . , pn such that p1 ≤ p2 ≤ · · · ≤ pn and

a = p1p2 · · · pn.

Theorem 2.3.2 (The Fundamental Theorem of Arithmetic). Any integer greater than 1 has a
unique representation as a product of primes in their natural order.

Definition 2.3.3. Let a be an integer greater than 1. In the representation given in Proposition
2.3.1, let the distinct primes be q1, q2, . . . , qr, where q1 < q2 < · · · < qr. Suppose that qi appears
ki times. Then the canonical form of a is:

a = qk1

1 qk2

2 · · · qkr

r .

Proposition 2.3.4. Let a be an integer greater than 1. Then a is a perfect square if, and only
if, the exponents in its canonical form are all even integers.

Example 2.3.5. Let a = 3, b = 9 and c = 316875. Here are the representations specified in
Theorem 2.3.2 and Definition 2.3.3:

a = 3 = 31,

b = 3 · 3 = 32,

c = 3 · 5 · 5 · 5 · 5 · 13 · 13 = 3154132 .

Exercise 2.3.6. Determine the canonical form of the integer 23! .

2.4 Linear Equations

Remark 2.4.1. In this section, we assume that a, b and c are integers, with a 6= 0 and b 6= 0.
Set d = gcd(a, b). The object is to investigate the solutions, if any, of the equation

ax + by = c .

Here, x and y are required to be integers. A positive solution is one for which both x and y are
positive integers.

Proposition 2.4.2. The equation in Remark 2.4.1 has a solution if, and only if, c is a multiple
of gcd(a, b).

Proposition 2.4.3. Suppose, in Remark 2.4.1, that d = 1 and that one solution is given by:
x = x0, y = y0. Then the general solution of the equation in Remark 2.4.1 is:

x = x0 + bt, y = y0 − at,

where t ranges over Z.
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Proposition 2.4.4. Suppose, in Remark 2.4.1, that one solution is given by: x = x0, y = y0.
Then the general solution of the equation in Remark 2.4.1 is:

x = x0 +
b

d
t, y = y0 −

a

d
t ,

where t ranges over Z.

Exercise 2.4.5. Find the general solution of the equation 55x + 65y = 1000. Find all positive
solutions.

Remark 2.4.6. An equation in which the parameters and unknowns are all integers is called a
Diophantine equation, named for the Greek mathematician Diophantus.

2.5 The Euclidean Algorithm

Remark 2.5.1. Suppose that a and b are positive integers. The purpose here is to see how to
determine gcd(a, b) and to find integers x and y such that

ax + by = gcd(a, b) .

Definition 2.5.2. Let a and b be integers, with a > b > 0. The Euclidean Algorithm is a
procedure for finding gcd(a, b). A list of integers

a1, a2, . . . , an−1, an

is constructed as follows. Let a1 = a and a2 = b. Let a3 be the remainder left by a1 when
divided by a2, let a4 be the remainder left by a2 when divided by a3, and so on. The process
stops when the next term would be 0. Hence, all terms are positive and an−1 is a multiple of an.

Proposition 2.5.3.∗ For the list in Definition 2.5.2 it is true that gcd(a1, a2) = an.

Definition 2.5.4. If a, b, c and d are integers, set

∣

∣
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∣

a b
c d

∣

∣

∣

∣

= ad−bc. This is called a determinant.

Definition 2.5.5. In these notes, a Euclidean array is an array of integers of the form

a1 a2 · · · an−1 an

q2 · · · qn−1

b1 b2 · · · bn−1 bn

.

It is assumed that n ≥ 3, and that, for 1 < k < n,

ak−1 = akqk + ak+1 and bk−1 = bkqk + bk+1

Proposition 2.5.6. In Definition 2.5.5, either
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∣
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∣

∣

∣

= −

∣

∣

∣

∣
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∣
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according to whether n is even or odd.
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2.6 An Example

The two integers of interest here are 275 and 635.

(1) To find the greatest common divisor of 275 and 635, apply the Euclidean Algorithm:

635 275 85 20 5 .

That is, 635 leaves a remainder 85 when divided by 275, and so on. Hence,

gcd(275, 635) = 5 .

(2) The object now is to solve the equation

275x + 635y = gcd(275, 635) .

A Euclidean array will be constructed. The second row consists of the quotients found, but
not shown, when applying the Euclidean Algorithm:

635 275 85 20 5
2 3 4

The third row is constructed from right to left. The best way to start is to put 1 and 0
beneath 20 and 5. The first and third rows are related to the second row in exactly the
same way, even though they are constructed in opposite directions. The array is:

635 275 85 20 5
2 3 4

30 13 4 1 0

That is, 30 leaves a remainder 4 when divided by 13, and so on. The computations are:

4 = 1 · 4 + 0, 13 = 4 · 3 + 1, 30 = 13 · 2 + 4 .

The first row has an odd number of entries. By Proposition 2.5.6,
∣

∣
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∣

635 275
30 13

∣
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= −

∣
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20 5
1 0

∣

∣

∣

∣

.

Hence, 635 · 13 − 275 · 30 = 5. That is, 275 · (−30) + 635 · (13) = 5.

(3) We now consider the equation

275x + 635y = gcd(275, 635) .

By Proposition 2.4.4, the general solution is:

x = −30 + 127t, y = 13 − 55t,

where t ranges over Z.
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2.7 Problems

Problem 2.7.1. Let q1 = 2. For n ≥ 2, let qn be the smallest prime divisor of the integer
1 + q1q2 · · · qn−1. Show that the qk are distinct, and thereby give another proof of Theorem
2.2.11. Verify that the first five terms are 2, 3, 7, 43, 13. Find the next two terms.

Problem 2.7.2. Determine all ways to make $2.35 with dimes and quarters.

Problem 2.7.3. Five hundred ducats were used to buy one hundred animals of three types.
The burros cost 11 ducats each, the camels cost 9 ducats each, and the dogs cost 2 ducats each.
How many animals of each kind were there?

Problem 2.7.4. Find the general solution of: 2669x + 3825y = gcd(2669, 3825).

Problem 2.7.5. Find the general solution of: 3409x + 1488y = 1.

Problem 2.7.6. Solve: 1234x − 4321y = 1.

Problem 2.7.7. Solve: 4275x + 2983y = gcd(4275, 2983).

2.8 Projects

Project 2.8.1. By Proposition 1.4.8, the product of any two consecutive integers is a multiple
of 2. Prove that the product of any three consecutive integers is a multiple of 6. What can you
say about the product of any four consecutive integers?

Project 2.8.2. Suppose that a and b be relatively prime integers, both greater than 1. Look
into the question of for which integers c the equation ax + by = c has a positive solution. It will
help to deal with three cases

c < a + b, c > ab, a + b ≤ c ≤ ab .

Project 2.8.3. In addition to the representations for integers given in Theorem 2.3.2 and
Definition 2.3.3, there is a third method that is useful when dealing with more than one integer
at the same time. For n ≥ 1, let pn be the n-th prime. For example, p1 = 2 and p2 = 3. Any
positive integer can be expressed using non-negative powers of the first n primes, for sufficiently
large n. For example, to represent the integer c in Example 2.3.5 using the first eight primes,
we write

316875 = 20315470110132170190 .

Use such representations to illuminate some of the propositions and definitions in Sections 2.1
and 2.2. Assume that all the integers being considered are positive.
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2.9 Proofs and Suggestions

Proof of Theorem 2.1.3.

(1) Let a and b be integers, not both zero.

(2) Let S = {z : z > 0, there exist x and y such that z = ax + by}.

(3) The integer a · a + b · b is an element of S, and so S is nonempty.

(4) 0 is a lower bound for S.

(5) By Axiom 16, there exists a least integer in S. Call it c. By (2), c is positive.

(6) There exist integers x and y such that c = ax + by.

(7) By Proposition 1.4.1, there exist integers q and r such that a = qc + r and 0 ≤ r ≤ c − 1.

(8) Let x′ = 1 − qx and y′ = −qy.

(9) r = a − qc = a − q(ax + by) = a(1 − qx) + b(−qy).

(10) r = ax′ + by′ and 0 ≤ r < c.

(11) r = 0, since c is the least integer in S.

(12) c divides a.

(13) Similarly, c divides b.

(14) c is a common divisor of a and b and c > 0.

(15) Any common divisor of a and b divides ax + by.

(16) c = gcd(a, b).

Suggestion for Proposition 2.1.5. Use Theorem 2.1.3.

Suggestion for Proposition 2.1.7. Let m = lcm(a, b), and let c be a common multiple. Show
that if r is the remainder left by c when divided by m, then r is also a common multiple, and
must be 0.

Suggestion for Proposition 2.1.8. Notice that
ab

d
= a

b

d
=

a

d
b.

Suggestion for Proposition 2.1.9. Let k =
ab

m
. Verify that a = k

m

b
and b = k

m

a
.

Suggestion for Proposition 2.1.10. Let d = gcd(a, b) and m = lcm(a, b). Use Proposition 2.1.8

to show that
ab

d
≥ m. Use Propositions 2.1.7 and 2.1.9 to show that

ab

m
≤ d.
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Lemma 2.2.4: Use Theorem 2.1.3 to write ax + by = 1, and multiply through by c.

Suggestion for Proposition 2.2.5. Use Theorem 2.1.3.

Suggestion for Theorem 2.2.7. If p divides ab but not a, apply Lemma 2.2.4 and Proposition
2.2.6.

Proof of Proposition 2.2.8.

(1) Let p be a prime and let a1, a2, . . . , an be integers. Suppose that p | a1a2 · · · an.

(2) Consider the set
S =

{

j ∈ {1, 2, . . . , n} : p | ajaj+1 · · · an

}

.

By (1) 1 ∈ S. Clearly x ≤ n for each x ∈ S. Thus S is non-empty and bounded above.
Therefore S has a maximum. Put m = max S.

(3) Now I shall prove that p | am. There are two cases:

Case 1 m = maxS = n.

Then n ∈ S. By the definition of the set S, I conclude that p | an.

Case 2 1 ≤ m < n.

Then m+1 ≤ n and m+1 6∈ S. Therefore p 6 |am+1am+2 · · ·an. Since m ∈ S, I conclude
that p | amam+1 · · · an. Since

p | amam+1 · · · an and p 6 |am+1am+2 · · · an,

Euclid’s Theorem implies that p | am.

Suggestion for Proposition 2.2.9. Use Proposition 2.2.8.

Suggestion for Proposition 2.2.10. Use Proposition 1.2.8.

Proof of Theorem 2.2.11, Euclid’s proof by contradiction.

(1) Assume that there exist only finitely many primes, say p1, p2, . . . , pn.

(2) Let b = 1 + p1p2 · · · pn.

(3) By Proposition 1.6.4, there exists a prime p that divides b.

(4) By Proposition 2.2.10, p does not equal any of the pk.

(5) That contradicts (1).
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Proof of Proposition 2.3.1.

(1) Let a ∈ Z and a > 1.

(2) Put

S =

{

b :
b ∈ Z, b > 1, b | a, b = q1 · · · qk, where
k is a positive integer and q1, . . . , qk are primes

}

.

(3) By (1) and Proposition 1.6.5 there exists a prime p that divides a. Clearly p ∈ S. Thus
S 6= ∅.

(4) If x ∈ S, then x > 1 and x | a. Therefore x ≤ a. Thus a is an upper bound for S.

(5) The lines (3) and (5) imply that Proposition 1.3.5 can be applied to the set S and we
conclude that S has a maximum. Let c = maxS.

(6) Since c ∈ S, we conclude that c ≤ a.

(7) Let x be an integer in S such that x < a. Then a = xs for some integer s. Since x < a, we
conclude that s > 1.

(8) By Proposition 1.6.5 and (7) we conclude that there exist a prime r such that r | s, that is
s = rt.

(9) From (7) and (8) we conclude that a = xrt. Therefore xr | a.

(10) Since x ∈ S there exist primes u1, . . . , uj such that x = u1 · · ·uj. Therefore xr = u1 · · ·ujr.

(11) Since clearly xr > 1, the lines (9) and (10) imply that xr ∈ S.

(12) Since r > 1 and x > 1, we have xr > x.

(13) The results from the lines (7) through (12) can be summarized as:

Let x ∈ S. If x < a, then x is not a greatest integer in S.

(14) The contrapositive of the statement in (13) is

Let x ∈ S. If x is a greatest integer in S, then x ≥ a.

(15) Since c is a greatest integer in S we conclude from (14) that c ≥ a.

(16) The lines (6) and (15) imply that c = a.

(17) Since a = c and c ∈ S we conclude that a ∈ S. By (2) it follows that there exist primes
p1, . . . , pn such that a = p1 · · ·pn.
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Suggestion for Theorem 2.3.2. In view of Proposition 2.3.1, the only thing to be proved is the
uniqueness of the representation. Let a be an integer greater than 1. Let m, n ∈ N and assume
that p1, p2, . . . , pm and q1, q2, . . . , qn are primes such that

p1 ≤ p2 ≤ · · · ≤ pm, q1 ≤ q2 ≤ · · · ≤ qn,
a = p1p2 · · · pm, a = q1q2 · · · qn .

(1) Let k ∈ {1, 2, . . . , n}. Since q1, q2, . . . , qn are primes, the following implication holds: If
k < n, then q1q2 · · · qk < a. The contrapositive of this implication is: If q1q2 · · · qk = a, then
k = n.
(2) We need to prove that m = n and p1 = q1, . . . , pm = qm. Notice that by Proposition 2.2.8
we have p1 = q1.
(3) Assume that m ≤ n and consider the set

S =
{

j ∈ {1, 2, . . . , m} : pj 6= qj

}

.

By Proposition 2.2.8 1 /∈ S. We will prove by contradiction that S = ∅. Suppose that S 6= ∅.
Since 1 is a lower bound for S, the set S has a minimum. Set k = min S. Since 1 /∈ S, 1 < k ≤ m.
Then 1, . . . , k − 1 /∈ S, that is p1 = q1, . . . , pk−1 = qk−1. By the assumption

a = p1 · · · pk−1pk · · · pm = q1 · · · qk−1qk · · · qn.

Therefore, pk · · · pm = qk · · · qn. Set b = pk · · · pm = qk · · · qn. Since k ≤ m, b > 1. By
Proposition 2.2.8 applied to b we deduce that pk = qk. Therefore k /∈ S. This contradicts
k = min S.
(4) By (3), S = ∅. Therefore, p1 = q1, . . . , pm = qm. Hence a = p1 · · ·pm = q1 · · · qm. By (1),
a = q1 · · · qm implies m ≥ n. Since we assumed that m ≤ n, this implies m = n.

Suggestion for Exercise 2.4.5. Divide by 5 and try various values of x and y.

Proof of Proposition 2.5.3.

(1) If n = 2, then gcd(a1, a2) = a2.

(2) Suppose that n > 2.

(3) Let qk be such that ak−1 = akqk + ak+1 for k = 2, 3, . . . , n − 1.

(4) The common divisors of ak−1 and ak are just the common divisors of ak and ak+1.

(5) gcd(ak−1, ak) = gcd(ak, ak+1) for each k.

(6) gcd(a1, a2) = gcd(a2, a3) = · · · = gcd(an−1, an) = an.

Suggestion for Proposition 2.5.6. Verify that
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ak−1 ak

bk−1 bk

∣
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= −

∣
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ak ak+1

bk bk+1

∣
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for k = 2, 3, . . . , n− 1.


