
Proposition 2.1.5. Let a and b be integers, not both zero. Then any common divisor of a and
b is a divisor of gcd(a, b).

Proof. The cast of characters in this proof:

• Integers a and b such that a2 + b2 > 0 .

• By Proposition 1.3.8 there exists a greatest common divisor of a and b. Set g = gcd(a, b).

• An integer c such that c|a and c|b .

• The previous line gives rise to two more characters: The integers u and v such that a = cu

and b = cv . The previous line gives also more information about c: c 6= 0 .

The quest in this proof is c|g . Or, more specifically the quest is c 6= 0 and an integer z

such that g = cz .

Now we start with the proof. By Theorem 2.1.3 there exist integers x and y such that

ax + by = g .

This is a quite dramatic scene, and the characters u and v demand the stage:

(cu)x + (cv)y = g .

But, the associativity of multiplication yields

c(ux) + c(vy) = g ,

and distributive low now gives

c(ux + vy) = g .

At this point our quest is finished in a color coordinated solution

z = ux + vy.

Since also c 6= 0 , the quest is successfully completed.
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Proposition 2.1.7. Let a and b be positive integers. Then any common multiple of a and b is
a multiple of lcm(a, b).

Proof. The cast of characters in this proof:

(I) Positive integers a and b.

(II) By Proposition 1.3.9 there exists a least positive common multiple of a and b.

Set m = lcm(a, b).

(III) The previous line, that is the phrase common multiple hides two more characters: the

integers j and k such that m = aj and m = bk .

(IV) It is important to notice the following character feature of m: It is the least positive

common multiple of a and b. What this means is the following

If an integer x is a common multiple of of a and b and x < m, then x ≤ 0.

(V) An integer c which is a common multiple of a and b.

(VI) The previous line gives rise to two more characters: The integers u and v such that c = au

and c = bv .

The quest in this proof is m|c . Or, more specifically the quest is m 6= 0 and an integer z

such that c = mz .

Now we start with the proof. In fact we start with a brilliant idea to use Proposition 1.4.1 .

This proposition is applied to the integers c and m > 0. By Proposition 1.4.1 there exist integers

q and r such that

c = mq + r and 0 ≤ r ≤ m − 1 .

What we learn about r from the previous line is that r < m . But, there is more action waiting
to be unfolded here. Follow the following two sequences of equalities (all the green equalities!):

r = c − mq = au − mq = au − (aj)q = a(u − jq)

r = c − mq = bv − mq = bv − (bk)q = b(v − kq).

The conclusion is: r is a common multiple of a and b . But wait, also r < m . Now the item

(IV) in the cast of characters (in fact the character feature of m) implies that r ≤ 0 . Since

also r ≥ 0 , we conclude r = 0 . Going back to the equality c = mq + r , we conclude that

c = mq . At this point our quest is completed in a color coordinated solution

z = q.
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Proposition 2.1.10. If a and b are positive integers, then ab = gcd(a, b) · lcm(a, b).

Proof. The cast of characters in this proof:

(I) Positive integers a and b.

(II) By Proposition 1.3.9 there exists a least positive common multiple of a and b.

Set m = lcm(a, b).

(III) The previous line, that is the phrase common multiple hides two more characters: the

integers j and k such that m = aj and m = bk .

(IV) It is important to notice the following character feature of m: It is the least positive

common multiple of a and b. What this means is the following

If an integer x is a common multiple of of a and b and x > 0, then m ≤ x.

(V) By Proposition 1.3.8 there exists a greatest common divisor of a and b. Set g = gcd(a, b).

(VI) The previous line gives rise to two more characters: The integers u and v such that a = gu

and b = gv . Since a > 0 , b > 0 and g > 0 , we conclude that u > 0 and v > 0 .

The quest in this proof is simple ab = mg .

Now we start with the proof. Consider a new green integer c = guv. Clearly

c = guv = av and c = guv = bu.

Hence c = av and c = bu . That is c is a common multiple of a and b. Moreover, c > 0 . Now

the item (IV) in the cast of characters (in fact the character feature of m) implies that m ≤ c .

Hence m ≤ guv . Multiplying both sides of this inequality by g > 0 we get

mg ≤ guvg = gugv = ab .

Hence mg ≤ ab . This is in some sense one half of the quest. For the second half, we recall

Theorem 2.1.3 and conclude that there exist integers x and y such that

ax + by = g .

Multiplying both sides of this equality by m > 0 we get mg = max + mby . Now more characters

are demanding the scene:

mg = max + mby = (bk)ax + (aj)by = ab(kx) + ab(jy) = ab(kx + jy).

Since mg > 0 and ab > 0 , I conclude kx + jy > 0 . Therefore mg ≥ ab . This is the second

half of the quest. So, the quest is completed.
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