Proposition 2.1.5. Let a and b be integers, not both zero. Then any common divisor of a and b is a divisor of $\operatorname{gcd}(a, b)$.

Proof. The cast of characters in this proof:

- Integers a and b such that $a^{2}+b^{2}>0$.
- By Proposition 1.3.8 there exists a greatest common divisor of a and b. Set $g=\operatorname{gcd}(a, b)$.
- An integer c such that $c \mid a$ and $c \mid b$.
- The previous line gives rise to two more characters: The integers u and v such that $a=c u$ and $b=c v$. The previous line gives also more information about $c: c \neq 0$.

The quest in this proof is $c \mid g$. Or, more specifically the quest is $c \neq 0$ and an integer z such that $g=c z$.

Now we start with the proof. By Theorem 2.1.3 there exist integers x and y such that

$$
a x+b y=g
$$

This is a quite dramatic scene, and the characters u and v demand the stage:

$$
(c u) x+(c v) y=g \text {. }
$$

But, the associativity of multiplication yields

$$
c(u x)+c(v y)=g
$$

and distributive low now gives

$$
c(u x+v y)=g \text {. }
$$

At this point our quest is finished in a color coordinated solution

$$
z=u x+v y .
$$

Since also $c \neq 0$, the quest is successfully completed.

Proposition 2.1.7. Let a and b be positive integers. Then any common multiple of a and b is a multiple of $\operatorname{lcm}(a, b)$.

Proof. The cast of characters in this proof:
(I) Positive integers a and b.
(II) By Proposition 1.3.9 there exists a least positive common multiple of a and b.

Set $m=\operatorname{lcm}(a, b)$.
(III) The previous line, that is the phrase common multiple hides two more characters: the integers j and k such that $m=a j$ and $m=b k$.
(IV) It is important to notice the following character feature of m : It is the least positive common multiple of a and b. What this means is the following

If an integer x is a common multiple of of a and b and $x<m$, then $x \leq 0$.
(V) An integer c which is a common multiple of a and b.
(VI) The previous line gives rise to two more characters: The integers u and v such that $c=a u$ and $c=b v$.
The quest in this proof is $m \mid c$. Or, more specifically the quest is $m \neq 0$ and an integer z such that $c=m z$.

Now we start with the proof. In fact we start with a brilliant idea to use Proposition 1.4.1. This proposition is applied to the integers c and $m>0$. By Proposition 1.4.1 there exist integers q and r such that

$$
c=m q+r \quad \text { and } \quad 0 \leq r \leq m-1 \text {. }
$$

What we learn about r from the previous line is that $r<m$. But, there is more action waiting to be unfolded here. Follow the following two sequences of equalities (all the green equalities!):

$$
\begin{aligned}
& r=c-m q=a u-m q=a u-(a j) q=a(u-j q) \\
& r=c-m q=b v-m q=b v-(b k) q=b(v-k q) .
\end{aligned}
$$

The conclusion is: r is a common multiple of a and b. But wait, also $r<m$. Now the item (IV) in the cast of characters (in fact the character feature of m) implies that $r \leq 0$. Since also $r \geq 0$, we conclude $r=0$. Going back to the equality $c=m q+r$, we conclude that $c=m q$. At this point our quest is completed in a color coordinated solution

$$
z=q
$$

Proposition 2.1.10. If a and b are positive integers, then $a b=\operatorname{gcd}(a, b) \cdot \operatorname{lcm}(a, b)$.
Proof. The cast of characters in this proof:
(I) Positive integers a and b.
(II) By Proposition 1.3.9 there exists a least positive common multiple of a and b. Set $m=\operatorname{lcm}(a, b)$.
(III) The previous line, that is the phrase common multiple hides two more characters: the integers j and k such that $m=a j$ and $m=b k$.
(IV) It is important to notice the following character feature of m : It is the least positive common multiple of a and b. What this means is the following

$$
\text { If an integer } x \text { is a common multiple of of } a \text { and } b \text { and } x>0 \text {, then } m \leq x \text {. }
$$

(V) By Proposition 1.3.8 there exists a greatest common divisor of a and b. Set $g=\operatorname{gcd}(a, b)$.
(VI) The previous line gives rise to two more characters: The integers u and v such that $a=g u$ and $b=g v$. Since $a>0, b>0$ and $g>0$, we conclude that $u>0$ and $v>0$.

The quest in this proof is simple $a b=m g$.
Now we start with the proof. Consider a new green integer $c=$ guv. Clearly

$$
c=g u v=a v \quad \text { and } \quad c=g u v=b u .
$$

Hence $c=a v$ and $c=b u$. That is c is a common multiple of a and b. Moreover, $c>0$. Now the item (IV) in the cast of characters (in fact the character feature of m) implies that $m \leq c$. Hence $m \leq g u v$. Multiplying both sides of this inequality by $g>0$ we get

$$
m g \leq g u v g=g u g v=a b
$$

Hence $m g \leq a b$. This is in some sense one half of the quest. For the second half, we recall Theorem 2.1.3 and conclude that there exist integers x and y such that

$$
a x+b y=g \text {. }
$$

Multiplying both sides of this equality by $m>0$ we get $m g=\max +m b y$. Now more characters are demanding the scene:

$$
m g=\max +m b y=(b k) a x+(a j) b y=a b(k x)+a b(j y)=a b(k x+j y)
$$

Since $m g>0$ and $a b>0$, I conclude $k x+j y>0$. Therefore $m g \geq a b$. This is the second half of the quest. So, the quest is completed.

