Winter 2019 Math 304 Topics for Exam 1
On an exam you can be asked to prove any of the theorems stated in the summary.

4.7 Change of bases (in fact: Change of coordinates).

$>$ Know that the matrix M with the property $[\mathbf{v}]_{\mathcal{C}}=M[\mathbf{v}]_{\mathcal{B}}$ is called the change-of-coordinate matrix from \mathcal{B} to \mathcal{C}. It is denoted $\underset{\mathcal{C} \leftarrow \mathcal{B}}{P}$ and it is calculated as

$$
\underset{\mathcal{C} \leftarrow \mathcal{B}}{P}=\left[\begin{array}{lll}
{\left[\mathbf{b}_{1}\right]_{\mathcal{C}}} & \cdots & {\left[\mathbf{b}_{n}\right]_{\mathcal{C}}}
\end{array}\right] ;
$$

here $\mathcal{B}=\left\{\mathbf{b}, \ldots, \mathbf{b}_{n}\right\}$ and \mathcal{C} are two bases of an n-dimensional vector space \mathcal{V} and $[\mathbf{v}]_{\mathcal{B}} \in \mathbb{R}^{n}$ denotes the coordinate vector of $\mathbf{v} \in \mathcal{V}$ relative to the basis \mathcal{B}.
$>(\underset{\mathcal{C} \leftarrow \mathcal{B}}{P})^{-1}=\underset{\mathcal{B} \leftarrow \mathcal{C}}{P}$
$>$ Know that there is a special basis of \mathbb{R}^{n}, called the standard basis, which consists of the columns of the identify matrix I_{n}. It is denoted by \mathcal{E}. This notattion comes from the fact that the vectors in this basis are commonly denoted by $\vec{e}_{1}, \cdots, \vec{e}_{n}$.
$>$ Know that for a basis $\mathcal{B}=\left\{\vec{b}_{1}, \ldots, \vec{b}_{n}\right\}$ for \mathbb{R}^{n} (this is a special case) we have

$$
\underset{\mathcal{E} \leftarrow \mathcal{B}}{P}=\left[\vec{b}_{1} \cdots \vec{b}_{n}\right]=P_{\mathcal{B}}
$$

(the matrix $P_{\mathcal{B}}$ was introduced in Section 4.4); this basically says that $\underset{\mathcal{E} \leftarrow \mathcal{B}}{P}$ is a very friendly matrix.
$>$ Know $\underset{\mathcal{C} \leftarrow \mathcal{B}}{P}=\left(\underset{\mathcal{C} \leftarrow \mathcal{E}}{P}\right.$) $\left(\underset{\mathcal{E} \leftarrow \mathcal{B}}{P}\right.$) $=(\underset{\mathcal{E} \leftarrow \mathcal{C}}{P})^{-1} \underset{\mathcal{E} \leftarrow \mathcal{B}}{P}=\left[\begin{array}{lll}\vec{c}_{1} & \cdots & \vec{c}_{n}\end{array}\right]^{-1}\left[\vec{b}_{1} \cdots \vec{b}_{n}\right]$
where $\mathcal{C}=\left\{\vec{c}_{1}, \ldots, \vec{c}_{n}\right\}$ is another basis for \mathbb{R}^{n}; this basically says that $\underset{\mathcal{C} \leftarrow \mathcal{B}}{P}$ can be written as a product of a very friendly matrix and the inverse of another very friendly matrix
$>$ Know Exercises 4-10, 13, 14.

5.1 Eigenvectors and eigenvalues.

$>$ Know the definition of an eigenvector and eigenvalue. It is a little tricky. Pay attention.
$>$ Know the definition of an eigenspace and how to find an eigenspace corresponding to a given eigenvalue.
$>$ Know that the eigenvalues of a triangular matrix are the entries on its main diagonal.
$>$ Theorem. Eigenvectors corresponding to distinct eigenvalues are linearly independent. (Or, in a more formal mathematical language: Let A be an $n \times n$ matrix, let $\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{m} \in \mathbb{R}^{n}$ and $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{m} \in \mathbb{R}$. If $A \vec{v}_{k}=\lambda_{k} \vec{v}_{k}, \vec{v}_{k} \neq \overrightarrow{0}$ and $\lambda_{j} \neq \lambda_{k}$ for all $j, k=1,2, \ldots, m$, then $\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{m}$ are linearly independent.
$>$ Know the proof of the above theorem for $m=2$ vectors.

5.2 The characteristic equation.

$>$ Know that λ is an eigenvalue of an $n \times n$ matrix A if and only if $\operatorname{det}(A-\lambda I)=0$
$>$ Know how to calculate $\operatorname{det}(A-\lambda I)$ for 2×2 matrices, how to find eigenvalues and corresponding eigenvectors. Exercises 1-8, but do more and find eigenvectors as well.

5.3 Diagonalization.

$>$ Theorem. (The diagonalization theorem) An $n \times n$ matrix A is diagonalizable if and only if A has n linearly independent eigenvectors.
$>$ Know how to decide whether a given 2×2 and 3×3 matrix A, is diagonalizable or not; if it is diagonalizable, how to find invertible matrix P and diagonal matrix D such that $A=P D P^{-1}$.

5.4 Eigenvectors and linear transformations.

$>$ Know that the matrix M with the property $[T \mathbf{v}]_{\mathcal{C}}=M[\mathbf{v}]_{\mathcal{B}}$ is called the matrix of T relative to the bases \mathcal{B} and \mathcal{C} and it is calculated as

$$
M=\left[\begin{array}{lll}
{\left[T \mathbf{b}_{1}\right]_{\mathcal{C}}} & \cdots & \left.\left[T \mathbf{b}_{n}\right]_{\mathcal{C}}\right]
\end{array}\right.
$$

where T be a linear transformation from an m-dimensional vector space \mathcal{V} to an n-dimensional vector space $\mathcal{W}, \mathcal{B}=\left\{\mathbf{b}, \ldots, \mathbf{b}_{m}\right\}$ is a basis for \mathcal{V} and \mathcal{C} is a basis for \mathcal{W}.
$>$ Know that the matrix M with the property $[T \mathbf{v}]_{\mathcal{B}}=M[\mathbf{v}]_{\mathcal{B}}$ is called the matrix of T relative to the basis \mathcal{B}, it is denoted by $[T]_{\mathcal{B}}$ and it is calculated as

$$
[T]_{\mathcal{B}}=\left[\begin{array}{lll}
{\left[T \mathbf{b}_{1}\right]_{\mathcal{B}}} & \cdots & {\left[T \mathbf{b}_{n}\right]_{\mathcal{B}}}
\end{array}\right]
$$

where $T: \mathcal{V} \rightarrow \mathcal{V}$ is a linear transformation on an n-dimensional vector space \mathcal{V} and $\mathcal{B}=\left\{\mathbf{b}, \ldots, \mathbf{b}_{n}\right\}$ is a basis for \mathcal{V}.
$>$ Theorem. (The diagonal matrix representation) Let A, D, P be $n \times n$ matrices, where P is invertible, D is diagonal and $A=P D P^{-1}$. If \mathcal{B} is the basis for \mathbb{R}^{n} which consists of the columns of P and if $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is given by $T \vec{v}=A \vec{v}$ for all $\vec{v} \in \mathbb{R}^{n}$, then $[T]_{\mathcal{B}}=D$.

5.5 Complex eigenvalues.

$>$ Know how to calculate complex eigenvalues and corresponding eigenvectors of 2×2 and 3×3 real matrices
$>$ Know that the most important class of 2×2 matrices with complex eigenvalues are rotation matrices; the matrix of the counterclockwise rotation about the origin by the angle θ measured in radians relative to the standard basis for \mathbb{R}^{2} is

$$
R_{\theta}=\left[\begin{array}{rr}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right] ;
$$

the 2×2 matrix R_{θ} is called the rotation matrix.
$>$ Theorem. (A "hiding rotation" theorem.) Let A be a real 2×2 matrix with a nonreal eigenvalue. Then there exist an invertible 2×2 matrix P, a positive scalar α and a rotation matrix R_{θ} such that $A=\alpha P R_{\theta} P^{-1}$.

