Problem 1. Let $\mathcal{V}=(-1,1)$. Define the addition and the scalar multiplication in \mathcal{V} by: For all $u, v \in \mathcal{V}$ and all $\alpha \in \mathbb{R}$ set

$$
u \oplus v=\frac{u+v}{1+u v}, \quad \alpha \diamond v=\frac{(1+v)^{\alpha}-(1-v)^{\alpha}}{(1+v)^{\alpha}+(1-v)^{\alpha}} .
$$

Prove that \mathcal{V} with the vector addition \diamond and the scaling \diamond is a vector space.
Problem 2. Consider the vector space \mathbb{P}_{2} of all polynomials with real coefficients of degree smaller or equal than 2, defined on the real line.
We say that $p \in \mathbb{P}_{2}$ has a vertex at $t \in \mathbb{R}$ if $p(t) \leq p(x)$ for all $x \in \mathbb{R}$ or $p(t) \geq p(x)$ for all $x \in \mathbb{R}$. (This definition might be somewhat awkward since under this definition a constant polynomial has a vertex at every real number.)
(i) Let $s \in \mathbb{R}$ be an arbitrary (fixed) number. Let \mathcal{Z}_{s} be the set all polynomials $p \in \mathbb{P}_{2}$ such that $p(s)=0$, that is,

$$
\mathcal{Z}_{s}=\left\{p \in \mathbb{P}_{2}: p(s)=0\right\}
$$

Prove that \mathcal{Z}_{s} is a subspace of \mathbb{P}_{2}. Find a basis of this subspace. What is $\operatorname{dim} \mathcal{Z}_{s}$?
(ii) Let $t \in \mathbb{R}$ be an arbitrary (fixed) number. Let \mathcal{V}_{t} be the set of all polynomials $p \in \mathbb{P}_{2}$ which have a vertex at t. Prove that \mathcal{V}_{t} is a subspace of \mathbb{P}_{2}. Find a basis of this subspace. What is $\operatorname{dim} \mathcal{V}_{t}$?
(iii) Let $s, t \in \mathbb{R}, s \neq t$. Describe the polynomials in each of the subspaces $\mathcal{Z}_{s} \cap \mathcal{Z}_{t}, \mathcal{V}_{t} \cap \mathcal{Z}_{s}$ and $\mathcal{V}_{s} \cap \mathcal{V}_{t}$. Find a basis for each of these subspaces.
(iv) Let $s, t \in \mathbb{R}$ be given. Solve the equation $\mathcal{Z}_{s} \cap \mathcal{Z}_{x}=\mathcal{V}_{y} \cap \mathcal{Z}_{t}$ for x and y.

Problem 3. Consider the vector space \mathcal{V} of all real valued functions defined on \mathbb{R}, see Example 5 on page 219. The purpose of this exercise is to study some special subspaces of the vector space \mathcal{V}. Let γ be an arbitrary (fixed) real number. Consider the set

$$
\mathcal{S}_{\gamma}:=\{f \in \mathcal{V}: \exists a, b \in \mathbb{R} \text { such that } f(t)=a \sin (\gamma t+b) \quad \forall t \in \mathbb{R}\}
$$

(a) Do you see exceptional values for γ for which the set \mathcal{S}_{γ} is particularly simple?
(b) Prove that \mathcal{S}_{γ} is a subspace of \mathcal{V}.
(c) For each $\gamma \in \mathbb{R}$ find a basis for \mathcal{S}_{γ}. Plot the function $\gamma \mapsto \operatorname{dim} \mathcal{S}_{\gamma}$.

