MATH 304 Assignment 0 September 27, 2019

Name ____

Problem 1. Let $\mathcal{V} = (-1, 1)$. Define the addition and the scalar multiplication in \mathcal{V} by: For all $u, v \in \mathcal{V}$ and all $\alpha \in \mathbb{R}$ set

$$u \Leftrightarrow v = \frac{u+v}{1+uv}, \qquad \alpha \Leftrightarrow v = \frac{(1+v)^{\alpha} - (1-v)^{\alpha}}{(1+v)^{\alpha} + (1-v)^{\alpha}}$$

Prove that \mathcal{V} with the vector addition \oplus and the scaling \otimes is a vector space.

Problem 2. Consider the vector space \mathbb{P}_2 of all polynomials with real coefficients of degree smaller or equal than 2, defined on the real line.

We say that $p \in \mathbb{P}_2$ has a vertex at $t \in \mathbb{R}$ if $p(t) \leq p(x)$ for all $x \in \mathbb{R}$ or $p(t) \geq p(x)$ for all $x \in \mathbb{R}$. (This definition might be somewhat awkward since under this definition a constant polynomial has a vertex at every real number.)

(i) Let $s \in \mathbb{R}$ be an arbitrary (fixed) number. Let \mathcal{Z}_s be the set all polynomials $p \in \mathbb{P}_2$ such that p(s) = 0, that is,

$$\mathcal{Z}_s = \left\{ p \in \mathbb{P}_2 : p(s) = 0 \right\}$$

Prove that \mathcal{Z}_s is a subspace of \mathbb{P}_2 . Find a basis of this subspace. What is dim \mathcal{Z}_s ?

- (ii) Let $t \in \mathbb{R}$ be an arbitrary (fixed) number. Let \mathcal{V}_t be the set of all polynomials $p \in \mathbb{P}_2$ which have a vertex at t. Prove that \mathcal{V}_t is a subspace of \mathbb{P}_2 . Find a basis of this subspace. What is dim \mathcal{V}_t ?
- (iii) Let $s, t \in \mathbb{R}, s \neq t$. Describe the polynomials in each of the subspaces $\mathcal{Z}_s \cap \mathcal{Z}_t, \mathcal{V}_t \cap \mathcal{Z}_s$ and $\mathcal{V}_s \cap \mathcal{V}_t$. Find a basis for each of these subspaces.
- (iv) Let $s, t \in \mathbb{R}$ be given. Solve the equation $\mathcal{Z}_s \cap \mathcal{Z}_x = \mathcal{V}_y \cap \mathcal{Z}_t$ for x and y.

Problem 3. Consider the vector space \mathcal{V} of all real valued functions defined on \mathbb{R} , see Example 5 on page 219. The purpose of this exercise is to study some special subspaces of the vector space \mathcal{V} . Let γ be an arbitrary (fixed) real number. Consider the set

$$\mathcal{S}_{\gamma} := \left\{ f \in \mathcal{V} : \exists a, b \in \mathbb{R} \text{ such that } f(t) = a \sin(\gamma t + b) \ \forall t \in \mathbb{R} \right\}.$$

- (a) Do you see exceptional values for γ for which the set S_{γ} is particularly simple?
- (b) Prove that S_{γ} is a subspace of \mathcal{V} .
- (c) For each $\gamma \in \mathbb{R}$ find a basis for S_{γ} . Plot the function $\gamma \mapsto \dim S_{\gamma}$.