Proposition 1. Prove that for all $a \in(-1,1)$ and all $b \in(-1,1)$ we have

$$
\begin{equation*}
\frac{a+b}{1+a b} \in(-1,1) \tag{1}
\end{equation*}
$$

Solution. Assume that $a \in(-1,1)$ and $b \in(-1,1)$. Then $|a| \in[0,1)$ and $|b| \in[0,1)$. Consequently, $|a b| \in[0,1)$. That is $a b \in(-1,1)$. Therefore $1+a b>0$.

Since $a, b \in(-1,1)$, we have $1+a>0,1-a>0,1+b>0$ and $1-b>0$.
Since $1+a>0$ and $1+b>0$, we have $(1+a)(1+b)>0$. Consequently, $1+a+b+a b>0$ and hence

$$
-1-a b<a+b
$$

As $1+a b>0$, dividing both sides of the last inequality by $1+a b$ we get

$$
\begin{equation*}
-1<\frac{a+b}{1+a b} \tag{2}
\end{equation*}
$$

Since $1-a>0$ and $1-b>0$, we have $(1-a)(1-b)>0$. Consequently, $1-a-b+a b>0$ and hence

$$
a+b<1+a b .
$$

As $1+a b>0$, dividing both sides of the last inequality by $1+a b$ we get

$$
\begin{equation*}
\frac{a+b}{1+a b}<1 \tag{3}
\end{equation*}
$$

Inequalities (2) and (3) prove inequality (1).

