4.1 Vector spaces and subspaces

- > Know the definition of a vector space and how to decide whether a given set is a vector space or not.
- ➤ Know the definition of a subspace of a vector space and how to decide whether a given subset of a vector space is a subspace or not.
- > For given vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_m$ in a vector space \mathcal{V} know the definition of a linear combination and the span, denoted by $\text{Span}\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_m\}$.
- > Know that $\text{Span}\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_m\}$ is a subspace of \mathcal{V} .

4.2 Null spaces, column spaces, and linear transformations

> For a given $m \times n$ matrix A know the definitions of Nul A, Col A and Row A and how to find bases for these subspaces. (See the post of October 4, Section 4.3 and Section 4.5.)

4.3 Linearly independent sets; bases

- > Know the definition of linearly independent vectors and a basis for a subspace.
- > Know how to decide whether given vectors from \mathbb{R}^n are linearly independent or not.
- > Know how to prove that the monomials $\mathbf{q}_0(t) = 1$, $\mathbf{q}_1(t) = t$, $\mathbf{q}_2(t) = t^2$, are linearly independent.
- > Know how to prove that the functions $\mathbf{c}(t) = \cos t$, $\mathbf{s}(t) = \sin t$ are linearly independent.

4.4 Coordinate systems.

- > Let \mathcal{V} be a vector space and let \mathcal{B} be a basis for \mathcal{V} . Know: the unique representation theorem, the definition of a coordinate mapping, the meaning of the symbol $[\mathbf{v}]_{\mathcal{B}}$ for a given vector \mathbf{v} in \mathcal{V} .
- \succ The importance of the matrix

$$P_{\mathcal{B}} = \left[\mathbf{b}_1 \cdots \mathbf{b}_n \right]$$

for a given basis $\mathcal{B} = \{\mathbf{b}_1, \dots, \mathbf{b}_n\}$ for \mathbb{R}^n (this is a special change-of-coordinate matrix, more in Section 4.7)

- > Theorem 8: Given a basis $\mathcal{B} = \{\mathbf{b}_1, \dots, \mathbf{b}_n\}$ of a vector space \mathcal{V} , the coordinate mapping $\mathbf{v} \mapsto [\mathbf{v}]_{\mathcal{B}}$ is a <u>one-to-one</u> linear transformation from \mathcal{V} <u>onto</u> \mathbb{R}^n . In other words, the coordinate mapping $\mathbf{v} \mapsto [\mathbf{v}]_{\mathcal{B}}$ is a linear bijection from \mathcal{V} to \mathbb{R}^n .
- \succ Know how a coordinate mapping for polynomials works, Examples 5 and 6
- \succ Know Exercises 10, 11, 13

4.5 The dimension of a vector space

> The definition of a finite dimensional vector space and the definition of the dimension of a finite dimensional vector space

4.6 Rank

- > Know the definition of the rank of a matrix, denoted by rank A.
- > Let *m* and *n* be positive integers. For a given $m \times n$ matrix *A* know the relationship between the following nonnegative integers:

 $\dim(\operatorname{Nul} A), \quad \dim(\operatorname{Col} A), \quad \dim(\operatorname{Row} A), \quad \operatorname{rank} A, \quad m, \quad n$

4.7 Change of bases (in fact: Change of coordinates).

> Know that the matrix M with the property $[\mathbf{v}]_{\mathcal{C}} = M[\mathbf{v}]_{\mathcal{B}}$ is called the **change-of-coordinate matrix** from \mathcal{B} to \mathcal{C} . It is denoted $\underset{\mathcal{C} \leftarrow \mathcal{B}}{P}$ and it is calculated as

$$\underset{\mathcal{C}\leftarrow\mathcal{B}}{P} = \left[\begin{array}{ccc} [\mathbf{b}_1]_{\mathcal{C}} & \cdots & [\mathbf{b}_n]_{\mathcal{C}} \end{array} \right];$$

here $\mathcal{B} = \{\mathbf{b}, \dots, \mathbf{b}_n\}$ and \mathcal{C} are two bases of an *n*-dimensional vector space \mathcal{V} and $[\mathbf{v}]_{\mathcal{B}} \in \mathbb{R}^n$ denotes the coordinate vector of $\mathbf{v} \in \mathcal{V}$ relative to the basis \mathcal{B} .

$$\succ \left(\underset{\mathcal{C} \leftarrow \mathcal{B}}{P} \right)^{-1} = \underset{\mathcal{B} \leftarrow \mathcal{C}}{P}$$

- > Know that there is a special basis of \mathbb{R}^n , called the **standard basis**, which consists of the columns of the identify matrix I_n . It is denoted by \mathcal{E} . This notattion comes from the fact that the vectors in this basis are commonly denoted by $\mathbf{e}_1, \dots, \mathbf{e}_n$.
- > Know that for a basis $\mathcal{B} = \{\mathbf{b}_1, \dots, \mathbf{b}_n\}$ for \mathbb{R}^n (this is a special case) we have

$$\underset{\mathcal{E}\leftarrow\mathcal{B}}{P} = \left[\mathbf{b}_1 \cdots \mathbf{b}_n \right] = P_{\mathcal{B}}$$

(the matrix $P_{\mathcal{B}}$ was introduced in Section 4.4); this basically says that $\underset{\mathcal{E} \leftarrow \mathcal{B}}{P}$ is a very friendly matrix.

 $\succ \text{ Know } \underset{\mathcal{C} \leftarrow \mathcal{B}}{P} = \begin{pmatrix} P \\ \mathcal{C} \leftarrow \mathcal{E} \end{pmatrix} \begin{pmatrix} P \\ \mathcal{E} \leftarrow \mathcal{B} \end{pmatrix} = \begin{pmatrix} P \\ \mathcal{E} \leftarrow \mathcal{C} \end{pmatrix}^{-1} \underset{\mathcal{C} \leftarrow \mathcal{B}}{P} = \begin{bmatrix} \mathbf{c}_1 \cdots \mathbf{c}_n \end{bmatrix}^{-1} \begin{bmatrix} \mathbf{b}_1 \cdots \mathbf{b}_n \end{bmatrix}$ where $\mathcal{C} = \{\mathbf{c}_1, \dots, \mathbf{c}_n\}$ is another basis for \mathbb{R}^n ; this basically says that P can be

where $C = \{\mathbf{c}_1, \dots, \mathbf{c}_n\}$ is another basis for \mathbb{R}^n ; this basically says that $\underset{C \leftarrow B}{P}$ can be written as a product of a very friendly matrix and the inverse of another very friendly matrix

 \succ Know Exercises 4 - 10, 13, 14.

5.1 Eigenvectors and eigenvalues.

- > Know the definition of an eigenvector and eigenvalue. It is a little tricky. Pay attention.
- > Know the definition of an eigenspace and how to find an eigenspace corresponding to a given eigenvalue.
- \succ Know that the eigenvalues of a triangular matrix are the entries on its main diagonal.
- > Theorem. Eigenvectors corresponding to distinct eigenvalues are linearly independent. (Or, in a more formal mathematical language: Let A be an $n \times n$ matrix, let $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_m \in \mathbb{R}^n$ and $\lambda_1, \lambda_2, \ldots, \lambda_m \in \mathbb{R}$. If $A\mathbf{v}_k = \lambda_k \mathbf{v}_k$, $\mathbf{v}_k \neq \mathbf{0}$ and $\lambda_j \neq \lambda_k$ for all $j, k = 1, 2, \ldots, m$, then $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_m$ are linearly independent.

5.2 The characteristic equation.

- > Know that λ is an eigenvalue of an $n \times n$ matrix A if and only if $det(A \lambda I) = 0$ (this is the characteristic equation for A)
- > Know how to calculate det $(A \lambda I)$ for 2×2 and 3×3 matrices, how to find eigenvalues and corresponding eigenvectors. Exercises 1-8, but do more and find eigenvectors as well. See the post of October 10.

5.3 Diagonalization.

- > Theorem. (The diagonalization theorem) An $n \times n$ matrix A is diagonalizable if and only if A has n linearly independent eigenvectors.
- > Know how to decide whether a given 2×2 and 3×3 matrix A, is diagonalizable or not; if it is diagonalizable, how to find invertible matrix P and diagonal matrix D such that $A = PDP^{-1}$. See the post of October 10.
- > Know how to decide whether a triangular matrix is diagonalizable or not. Consider the matrix A in Exercise 18 in Section 5.2 and find h such that the matrix A is diagonalizable.

5.4 Eigenvectors and linear transformations.

> Know that the matrix M with the property $[T\mathbf{v}]_{\mathcal{C}} = M[\mathbf{v}]_{\mathcal{B}}$ is called the **matrix of** T relative to the bases \mathcal{B} and \mathcal{C} and it is calculated as

$$M = \left[[T\mathbf{b}_1]_{\mathcal{C}} \cdots [T\mathbf{b}_n]_{\mathcal{C}} \right],$$

where T be a linear transformation from an m-dimensional vector space \mathcal{V} to an n-dimensional vector space \mathcal{W} , $\mathcal{B} = \{\mathbf{b}, \dots, \mathbf{b}_m\}$ is a basis for \mathcal{V} and \mathcal{C} is a basis for \mathcal{W} .

> Know that the matrix M with the property $[T\mathbf{v}]_{\mathcal{B}} = M[\mathbf{v}]_{\mathcal{B}}$ is called the **matrix of** T relative to the basis \mathcal{B} , it is denoted by $[T]_{\mathcal{B}}$ and it is calculated as

$$[T]_{\mathcal{B}} = \left[[T\mathbf{b}_1]_{\mathcal{B}} \cdots [T\mathbf{b}_n]_{\mathcal{B}} \right],$$

where $T: \mathcal{V} \to \mathcal{V}$ is a linear transformation on an *n*-dimensional vector space \mathcal{V} and $\mathcal{B} = \{\mathbf{b}, \ldots, \mathbf{b}_n\}$ is a basis for \mathcal{V} .

> **Theorem.** (The diagonal matrix representation) Let A, D, P be $n \times n$ matrices, where P is invertible, D is diagonal and $A = PDP^{-1}$. If \mathcal{B} is the basis for \mathbb{R}^n which consists of the columns of P and if $T : \mathbb{R}^n \to \mathbb{R}^n$ is given by $T\mathbf{v} = A\mathbf{v}$ for all $\mathbf{v} \in \mathbb{R}^n$, then $[T]_{\mathcal{B}} = D$.

5.5 Complex eigenvalues.

- \succ Know how to calculate complex eigenvalues and corresponding eigenvectors of 2×2 and 3×3 real matrices
- > Know that the most important class of 2×2 matrices with complex eigenvalues are rotation matrices; the matrix of the counterclockwise rotation about the origin by the angle θ measured in radians relative to the standard basis for \mathbb{R}^2 is

$$R_{\theta} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix};$$

the 2×2 matrix R_{θ} is called the **rotation matrix**.

- > Theorem. (A "hiding rotation" theorem.) Let A be a real 2×2 matrix with a nonreal eigenvalue. Then there exist an invertible 2×2 matrix P, a positive scalar α and a rotation matrix R_{θ} such that $A = \alpha P R_{\theta} P^{-1}$.
- > In relation to the previous item see the post on October 15.

6.1 Inner product, length, and orthogonality.

> Know the definition of the dot product in \mathbb{R}^n , its basic properties and calculations involving it. For

$$\mathbf{u} = \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{bmatrix} \in \mathbb{R}^n, \quad \mathbf{v} = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix} \in \mathbb{R}^n, \qquad \mathbf{u} \cdot \mathbf{v} = \sum_{k=1}^n u_k v_k = \mathbf{u}^\top \mathbf{v} = \mathbf{v}^\top \mathbf{u}.$$

- > Know the definition, the basic properties of the length of a vector in \mathbb{R}^n , its properties and calculations involving it.
- > Know the definition of the distance in \mathbb{R}^n and calculations involving it.
- > Know the definition of orthogonality in \mathbb{R}^n and calculations involving it.
- \succ Know the statement and the proof of the linear algebra version of the **Pythagorean theorem**.
- > Know the definition and the basic properties of the orthogonal complement in \mathbb{R}^n .
- > Know that for a given $m \times n$ matrix A we have $(\operatorname{Row} A)^{\perp} = \operatorname{Nul} A$ and $(\operatorname{Col} A)^{\perp} = \operatorname{Nul}(A^{\top})$.
- > Know the geometric interpretation of the dot product in \mathbb{R}^2 and \mathbb{R}^3 :

$$\mathbf{u} \cdot \mathbf{v} = \|\mathbf{u}\| \|\mathbf{v}\| \cos \vartheta, \tag{1}$$

where **u** and **v** are vectors in \mathbb{R}^2 or in \mathbb{R}^3 , ϑ is the angle at the vertex *O* in the triangle *OAB* with *O* being the origin, *A* being the endpoint of **u** and *B* the endpoint of **v**. (You should know the proof of formula (1).)