\qquad
For full credit Justify your answers.
Problem 1. Let $\mathcal{V}=\left(\mathbb{R}_{+}\right)^{2}$. Define the addition and the scalar multiplication in \mathcal{V} as follows: For all $\left[\begin{array}{l}u_{1} \\ u_{2}\end{array}\right],\left[\begin{array}{l}v_{1} \\ v_{2}\end{array}\right] \in \mathcal{V}$ and all $\alpha \in \mathbb{R}$ set

$$
\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right]+\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
u_{1} v_{1} \\
u_{2} v_{2}
\end{array}\right], \quad \alpha\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
\left(v_{1}\right)^{\alpha} \\
\left(v_{2}\right)^{\alpha}
\end{array}\right] .
$$

(a) Prove that \mathcal{V} with this vector addition and this vector scaling is a vector space.
(b) Describe each of the following four subspaces of \mathcal{V} in the set-builder notation in terms of the coordinates of the vectors which belong to these subspaces.

$$
\operatorname{Span}\left\{\left[\begin{array}{l}
1 \\
2
\end{array}\right]\right\}, \quad \operatorname{Span}\left\{\left[\begin{array}{l}
2 \\
1
\end{array}\right]\right\}, \quad \operatorname{Span}\left\{\left[\begin{array}{l}
2 \\
2
\end{array}\right]\right\}, \quad \operatorname{Span}\left\{\left[\begin{array}{l}
4 \\
2
\end{array}\right]\right\}, \quad \operatorname{Span}\left\{\left[\begin{array}{l}
2 \\
4
\end{array}\right]\right\} .
$$

For each of the above four subspaces provide a visual illustration in the coordinate system $\mathbb{R}_{+} \times \mathbb{R}_{+}$.
Problem 2. Let \mathcal{V} be an abstract vector space. Suppose that vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{4} \in \mathcal{V}$ are linearly independent. Prove that the vectors

$$
\mathbf{v}_{1}+\mathbf{v}_{2}+\mathbf{v}_{3}, \quad \mathbf{v}_{2}+\mathbf{v}_{3}+\mathbf{v}_{4}, \quad \mathbf{v}_{3}+\mathbf{v}_{4}+\mathbf{v}_{1}, \quad \mathbf{v}_{4}+\mathbf{v}_{1}+\mathbf{v}_{2}
$$

are linearly independent.
Problem 3. Is the matrix A given below diagonalizable?

$$
A=\left[\begin{array}{rrrr}
2 & 1 & -1 & -1 \\
-1 & 0 & 1 & 1 \\
0 & 0 & 1 & 0 \\
8 & 4 & -8 & -3
\end{array}\right]
$$

Please provide all the details of your reasoning.
Problem 4. Consider the following matrix A and vector \mathbf{v}

$$
A=\left[\begin{array}{rrr}
-1 & 2 & 0 \\
-2 & 4 & 1 \\
4 & -7 & -2
\end{array}\right], \quad \mathbf{v}=\left[\begin{array}{c}
1+i \\
1 \\
-2+i
\end{array}\right]
$$

(a) Prove that \mathbf{v} is an eigenvector of A.
(b) Find an invertible real matrix P and real numbers a, b, c such that

$$
P^{-1} A P=\left[\begin{array}{rrr}
a & 0 & 0 \\
0 & b & -c \\
0 & c & b
\end{array}\right]
$$

(c) Based on item (b) provide an explanation of the action of the matrix A similar to the explanation in the book on page 301.
(d) Based on item (c) state what is A^{4}. Explain your reasoning. No calculations are needed here.
(e) Do the items (b) and (c) above for the matrix

$$
\left[\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right] .
$$

Problem 5. This problem is about a specific 4×5 matrix A and its transpose. The recuced row echelon forms of each of these matrix is given below:

$$
\begin{gathered}
A=\left[\begin{array}{rrrrr}
3 & -6 & 2 & 3 & 4 \\
-3 & 6 & -2 & -3 & -4 \\
1 & -2 & 1 & 2 & 1 \\
3 & -6 & 1 & 0 & 5
\end{array}\right] \sim \cdots \sim\left[\begin{array}{rrrrr}
1 & -2 & 0 & -1 & 2 \\
0 & 0 & 1 & 3 & -1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right], \\
A^{\top}=\left[\begin{array}{rrrr}
3 & -3 & 1 & 3 \\
-6 & 6 & -2 & -6 \\
2 & -2 & 1 & 1 \\
3 & -3 & 2 & 0 \\
4 & -4 & 1 & 5
\end{array}\right] \sim \cdots \sim\left[\begin{array}{rrrr}
1 & -1 & 0 & 2 \\
0 & 0 & 1 & -3 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] .
\end{gathered}
$$

(a) For each of the subspaces $\operatorname{Col} A, \operatorname{Row} A, \operatorname{Nul} A, \operatorname{Col}\left(A^{\top}\right), \operatorname{Row}\left(A^{\top}\right)$, and $\operatorname{Nul}\left(A^{\top}\right)$ identify the Euclidian space \mathbb{R}^{n} of which it is a subspace. Among the six listed subspaces there are only four distinct subspaces. Identify the subspaces which are equal.
(b) Based on the RREF of A identify the following three bases. Make sure that you explain why each of the proposed sets is a basis of the corresponding subspace.
(i) The basis of the column space $\operatorname{Col} A$ of A. Call this basis \mathcal{C}. For each column, say \mathbf{c} of A state clearly the coordinate vector $[\mathbf{c}]_{\mathcal{C}}$.
(ii) The basis of the row space Row A of A. Call this basis \mathcal{B}. For each row vector, say \mathbf{r} of A state clearly the coordinate vector $[\mathbf{r}]_{\mathcal{B}}$.
(iii) The basis of the nul space $\operatorname{Nul} A$ of A. Call this basis \mathcal{E}.
(iv) Prove $(\operatorname{Nul} A) \cap(\operatorname{Row} A)=\{\mathbf{0}\}$. (Hint: Prove that the union of the bases \mathcal{B} and \mathcal{E} is a basis for the entire Euclidean space in which both of these subspaces live.)
(c) Based on the RREF of A^{\top} identify the following three bases. Make sure that you explain why each of the proposed sets is a basis of the corresponding subspace.
(i) The basis of the column space $\operatorname{Col} A$ of A. Call this basis \mathcal{D}. For each column, say \mathbf{c} of A state clearly the coordinate vector $[\mathbf{c}]_{\mathcal{D}}$.
(ii) The basis of the row space Row A of A. Call this basis \mathcal{A}. For each row vector, say \mathbf{r} of A state clearly the coordinate vector $[\mathbf{r}]_{\mathcal{A}}$.
(iii) The basis of the nul space $\operatorname{Nul}\left(A^{\top}\right)$ of A. Call this basis \mathcal{F}.
(iv) Prove $\left(\operatorname{Nul}\left(A^{\top}\right)\right) \cap(\operatorname{Col} A)=\{0\}$.
(d) Calculate the following four matrices:

$$
\underset{\mathcal{B} \leftarrow \mathcal{A}^{\prime}}{P} \quad \underset{\mathcal{A} \leftarrow \mathcal{B}^{\prime}}{P} \quad \underset{\mathcal{D} \leftarrow \mathcal{C}^{\prime}}{P} \quad \underset{\mathcal{C} \leftarrow \mathcal{D}}{P} .
$$

(e) Do you see how two of the preceding four matrices could have been recognized immediately from the matrix A ?

