4.1 Vector spaces and subspaces

$>$ Know the definition of a vector space and how to decide whether a given set is a vector space or not.
$>$ Know the definition of a subspace of a vector space and how to decide whether a given subset of a vector space is a subspace or not.
$>$ For given vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{m}$ in a vector space \mathcal{V} know the definition of a linear combination and the span, denoted by $\operatorname{Span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{m}\right\}$.
$>$ Know that $\operatorname{Span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{m}\right\}$ is a subspace of \mathcal{V}.

4.2 Null spaces, column spaces, and linear transformations

$>$ For a given $m \times n$ matrix A know the definitions of $\operatorname{Nul} A, \operatorname{Col} A$ and Row A and how to find bases for these subspaces. (See the post of January 17, Section 4.3 and Section 4.5.)

4.3 Linearly independent sets; bases

$>$ Know the definition of linearly independent vectors and a basis for a subspace.
$>$ Know how to decide whether given vectors from \mathbb{R}^{n} are linearly independent or not.
$>$ Know how to prove that the monomials $\mathbf{q}_{0}(x)=1, \mathbf{q}_{1}(x)=x, \mathbf{q}_{2}(x)=x^{2}$, are linearly independent. This proof is presented in the post on January 10.
$>$ Know how to find a basis of a given subspace of \mathbb{P}_{2}; see examples in the post on January 10 .

4.4 Coordinate systems.

$>$ Let \mathcal{V} be a vector space and let \mathcal{B} be a basis for \mathcal{V}. Know: the unique representation theorem, the definition of a coordinate mapping, the meaning of the symbol $[\mathbf{v}]_{\mathcal{B}}$ for a given vector \mathbf{v} in \mathcal{V}.
$>$ Theorem 8: Given a basis $\mathcal{B}=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right\}$ of a vector space \mathcal{V}, the coordinate mapping $\mathbf{v} \mapsto[\mathbf{v}]_{\mathcal{B}}$ is a one-to-one linear transformation from \mathcal{V} onto \mathbb{R}^{n}. In other words, the coordinate mapping $\mathbf{v} \mapsto[\mathbf{v}]_{\mathcal{B}}$ is a linear bijection from \mathcal{V} to \mathbb{R}^{n}.
$>$ Know how a coordinate mapping for polynomials works, Examples 5 and 6. See also the post on January 10.
> Know Exercises 10, 11, 13

4.5 The dimension of a vector space

$>$ The definition of a finite dimensional vector space and the definition of the dimension of a finite dimensional vector space

4.6 Rank

$>$ Know the definition of the rank of a matrix, denoted by $\operatorname{rank} A$.
$>$ Let m and n be positive integers. For a given $m \times n$ matrix A know the relationship between the following nonnegative integers:

$$
\operatorname{dim}(\operatorname{Nul} A), \quad \operatorname{dim}(\operatorname{Col} A), \quad \operatorname{dim}(\operatorname{Row} A), \quad \operatorname{rank} A, \quad m, \quad n
$$

4.7 Change of bases (in fact: Change of coordinates).

$>$ Know that the matrix M with the property $[\mathbf{v}]_{\mathcal{C}}=M[\mathbf{v}]_{\mathcal{B}}$ is called the change-of-coordinates matrix from \mathcal{B} to \mathcal{C}. It is denoted $\underset{\mathcal{C} \leftarrow \mathcal{B}}{P}$ and it is calculated as

$$
\underset{\mathcal{C} \leftarrow \mathcal{B}}{P}=\left[\begin{array}{lll}
{\left[\mathbf{b}_{1}\right]_{\mathcal{C}}} & \cdots & \left.\left[\mathbf{b}_{n}\right]_{\mathcal{C}}\right] ;
\end{array}\right.
$$

here $\mathcal{B}=\left\{\mathbf{b}, \ldots, \mathbf{b}_{n}\right\}$ and \mathcal{C} are two bases of an n-dimensional vector space \mathcal{V} and $[\mathbf{v}]_{\mathcal{B}} \in \mathbb{R}^{n}$ denotes the coordinate vector of $\mathbf{v} \in \mathcal{V}$ relative to the basis \mathcal{B}.
$>(\underset{\mathcal{C} \leftarrow \mathcal{B}}{P})^{-1}=\underset{\mathcal{B} \leftarrow \mathcal{C}}{P}$
$>$ The post on February 1 has a graphical example of change-of-coordinates matrix.
$>$ Know that there is a special basis of \mathbb{R}^{n}, called the standard basis, which consists of the columns of the identify matrix I_{n}. It is denoted by \mathcal{E}. This notattion comes from the fact that the vectors in this basis are commonly denoted by $\mathbf{e}_{1}, \cdots, \mathbf{e}_{n}$.
$>$ Know that for a basis $\mathcal{B}=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right\}$ for \mathbb{R}^{n} (this is a special case) we have

$$
\underset{\mathcal{E} \leftarrow \mathcal{B}}{P}=\left[\mathbf{b}_{1} \cdots \mathbf{b}_{n}\right]=P_{\mathcal{B}}
$$

(the matrix $P_{\mathcal{B}}$ was introduced in Section 4.4); this basically says that $\underset{\mathcal{E} \leftarrow \mathcal{B}}{P}$ is a very friendly matrix.
$>$ The post on January 17 has important examples of change-of-coordinates matrices in the context of the column space $\operatorname{Col} A$ and the row space Row A of a given matrix.
$>$ Know Exercises 4-10, 13, 14.

5.1 Eigenvectors and eigenvalues.

$>$ Know the definition of an eigenvector and eigenvalue. It is a little tricky. Pay attention.
$>$ Know the definition of an eigenspace and how to find an eigenspace corresponding to a given eigenvalue.
$>$ Know that the eigenvalues of a triangular matrix are the entries on its main diagonal.
$>$ Theorem. Eigenvectors corresponding to distinct eigenvalues are linearly independent. (Or, in a more formal mathematical language: Let A be an $n \times n$ matrix, let $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{m} \in \mathbb{R}^{n}$ and $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{m} \in \mathbb{R}$. If $A \mathbf{v}_{k}=\lambda_{k} \mathbf{v}_{k}, \mathbf{v}_{k} \neq \mathbf{0}$ and $\lambda_{j} \neq \lambda_{k}$ for all $j, k=1,2, \ldots, m$, then $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{m}$ are linearly independent.

5.2 The characteristic equation.

$>$ Know that λ is an eigenvalue of an $n \times n$ matrix A if and only if $\operatorname{det}(A-\lambda I)=0$ (this is the characteristic equation for A)
$>$ Know how to calculate $\operatorname{det}(A-\lambda I)$ for 2×2 and 3×3 matrices, how to find eigenvalues and corresponding eigenvectors. Exercises 1-8, but do more and find eigenvectors as well. See the post of January 24.

5.3 Diagonalization.

$>$ Theorem. (The diagonalization theorem) An $n \times n$ matrix A is diagonalizable if and only if A has n linearly independent eigenvectors.
$>$ Know how to decide whether a given 2×2 and 3×3 matrix A, is diagonalizable or not; if it is diagonalizable, how to find invertible matrix P and diagonal matrix D such that $A=P D P^{-1}$. See the post of January 24.
$>$ Know how to decide whether a triangular matrix is diagonalizable or not. Consider the matrix A in Exercise 18 in Section 5.2 and find h such that the matrix A is diagonalizable.

5.4 Eigenvectors and linear transformations.

$>$ Know that the matrix M with the property $[T \mathbf{v}]_{\mathcal{C}}=M[\mathbf{v}]_{\mathcal{B}}$ is called the matrix of T relative to the bases \mathcal{B} and \mathcal{C} and it is calculated as

$$
M=\left[\begin{array}{lll}
{\left[T \mathbf{b}_{1}\right]_{\mathcal{C}}} & \cdots & \left.\left[T \mathbf{b}_{n}\right]_{\mathcal{C}}\right], ~
\end{array}\right.
$$

where T be a linear transformation from an m-dimensional vector space \mathcal{V} to an n-dimensional vector space $\mathcal{W}, \mathcal{B}=\left\{\mathbf{b}, \ldots, \mathbf{b}_{m}\right\}$ is a basis for \mathcal{V} and \mathcal{C} is a basis for \mathcal{W}.
$>$ Know that the matrix M with the property $[T \mathbf{v}]_{\mathcal{B}}=M[\mathbf{v}]_{\mathcal{B}}$ is called the matrix of T relative to the basis \mathcal{B}, it is denoted by $[T]_{\mathcal{B}}$ and it is calculated as

$$
[T]_{\mathcal{B}}=\left[\begin{array}{lll}
{\left[T \mathbf{b}_{1}\right]_{\mathcal{B}}} & \cdots & {\left[T \mathbf{b}_{n}\right]_{\mathcal{B}}}
\end{array}\right]
$$

where $T: \mathcal{V} \rightarrow \mathcal{V}$ is a linear transformation on an n-dimensional vector space \mathcal{V} and $\mathcal{B}=\left\{\mathbf{b}, \ldots, \mathbf{b}_{n}\right\}$ is a basis for \mathcal{V}.
$>$ Theorem. (The diagonal matrix representation) Let A, D, P be $n \times n$ matrices, where P is invertible, D is diagonal and $A=P D P^{-1}$. If \mathcal{B} is the basis for \mathbb{R}^{n} which consists of the columns of P and if $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is given by $T \mathbf{v}=A \mathbf{v}$ for all $\mathbf{v} \in \mathbb{R}^{n}$, then $[T]_{\mathcal{B}}=D$.
$>$ See the relevant examples on January 28 and January 30.

5.5 Complex eigenvalues.

$>$ Know how to calculate complex eigenvalues and corresponding eigenvectors of 2×2 real matrices
$>$ Know that the most important class of 2×2 matrices with complex eigenvalues are rotation matrices; the matrix of the counterclockwise rotation about the origin by the angle θ measured in radians relative to the standard basis for \mathbb{R}^{2} is

$$
R_{\theta}=\left[\begin{array}{rr}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right] ;
$$

the 2×2 matrix R_{θ} is called the rotation matrix.
$>$ Theorem. (A "hidden rotation-dilation" theorem.) Let A be a real 2×2 matrix with a nonreal eigenvalue $a-i b$ and a corresponding eigenvector $\mathbf{u}+i \mathbf{v}$. Here $a, b \in \mathbb{R}, b \neq 0$ and $\mathbf{u}, \mathbf{v} \in \mathbb{R}^{2}$. Then the 2×2 matrix

$$
P=\left[\begin{array}{ll}
\mathbf{u} & \mathbf{v}
\end{array}\right]
$$

is invertible and

$$
A=\alpha P\left[\begin{array}{rr}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right] P^{-1},
$$

where $\alpha=\sqrt{a^{2}+b^{2}}$ and $\theta \in[0,2 \pi)$ is such that

$$
\cos \theta=\frac{a}{\sqrt{a^{2}+b^{2}}}, \quad \sin \theta=\frac{b}{\sqrt{a^{2}+b^{2}}} .
$$

$>$ In relation to the previous item see the post on January 31.

