4.1 Vector spaces and subspaces

- Know the definition of a vector space and how to decide whether a given set is a vector space or not.
- ➤ Know the definition of a subspace of a vector space and how to decide whether a given subset of a vector space is a subspace or not.
- > For given vectors $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_m$ in a vector space \mathcal{V} know the definition of a linear combination and the span, denoted by $\text{Span}\{\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_m\}$.
- > Know that $\text{Span}\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_m\}$ is a subspace of \mathcal{V} .

4.2 Null spaces, column spaces, and linear transformations

> For a given $m \times n$ matrix A know the definitions of Nul A, Col A and Row A and how to find bases for these subspaces. (See the post of January 17, Section 4.3 and Section 4.5.)

4.3 Linearly independent sets; bases

- > Know the definition of linearly independent vectors and a basis for a subspace.
- > Know how to decide whether given vectors from \mathbb{R}^n are linearly independent or not.
- > Know how to prove that the monomials $\mathbf{q}_0(x) = 1$, $\mathbf{q}_1(x) = x$, $\mathbf{q}_2(x) = x^2$, are linearly independent. This proof is presented in the post on January 10.
- > Know how to find a basis of a given subspace of \mathbb{P}_2 ; see examples in the post on January 10.

4.4 Coordinate systems.

- > Let \mathcal{V} be a vector space and let \mathcal{B} be a basis for \mathcal{V} . Know: the unique representation theorem, the definition of a coordinate mapping, the meaning of the symbol $[\mathbf{v}]_{\mathcal{B}}$ for a given vector \mathbf{v} in \mathcal{V} .
- > Theorem 8: Given a basis $\mathcal{B} = \{\mathbf{b}_1, \dots, \mathbf{b}_n\}$ of a vector space \mathcal{V} , the coordinate mapping $\mathbf{v} \mapsto [\mathbf{v}]_{\mathcal{B}}$ is a <u>one-to-one</u> linear transformation from \mathcal{V} <u>onto</u> \mathbb{R}^n . In other words, the coordinate mapping $\mathbf{v} \mapsto [\mathbf{v}]_{\mathcal{B}}$ is a linear bijection from \mathcal{V} to \mathbb{R}^n .
- ➤ Know how a coordinate mapping for polynomials works, Examples 5 and 6. See also the post on January 10.
- \succ Know Exercises 10, 11, 13

4.5 The dimension of a vector space

➤ The definition of a finite dimensional vector space and the definition of the dimension of a finite dimensional vector space

4.6 Rank

- > Know the definition of the rank of a matrix, denoted by rank A.
- > Let m and n be positive integers. For a given $m \times n$ matrix A know the relationship between the following nonnegative integers:

```
\dim(\operatorname{Nul} A), \quad \dim(\operatorname{Col} A), \quad \dim(\operatorname{Row} A), \quad \operatorname{rank} A, \quad m, \quad n
```

4.7 Change of bases (in fact: Change of coordinates).

> Know that the matrix M with the property $[\mathbf{v}]_{\mathcal{C}} = M[\mathbf{v}]_{\mathcal{B}}$ is called the **change-of-coordinates** matrix from \mathcal{B} to \mathcal{C} . It is denoted $\underset{\mathcal{C} \leftarrow \mathcal{B}}{P}$ and it is calculated as

$$\underset{\mathcal{C}\leftarrow\mathcal{B}}{P} = \Big[[\mathbf{b}_1]_{\mathcal{C}} \cdots [\mathbf{b}_n]_{\mathcal{C}} \Big];$$

here $\mathcal{B} = \{\mathbf{b}, \dots, \mathbf{b}_n\}$ and \mathcal{C} are two bases of an *n*-dimensional vector space \mathcal{V} and $[\mathbf{v}]_{\mathcal{B}} \in \mathbb{R}^n$ denotes the coordinate vector of $\mathbf{v} \in \mathcal{V}$ relative to the basis \mathcal{B} .

$$\succ \left(\underset{\mathcal{C} \leftarrow \mathcal{B}}{P} \right)^{-1} = \underset{\mathcal{B} \leftarrow \mathcal{C}}{P}$$

- \succ The post on February 1 has a graphical example of change-of-coordinates matrix.
- > Know that there is a special basis of \mathbb{R}^n , called the **standard basis**, which consists of the columns of the identify matrix I_n . It is denoted by \mathcal{E} . This notattion comes from the fact that the vectors in this basis are commonly denoted by $\mathbf{e}_1, \dots, \mathbf{e}_n$.
- > Know that for a basis $\mathcal{B} = \{\mathbf{b}_1, \dots, \mathbf{b}_n\}$ for \mathbb{R}^n (this is a special case) we have

$$\underset{\mathcal{E}\leftarrow\mathcal{B}}{P} = \left[\mathbf{b}_1 \cdots \mathbf{b}_n \right] = P_{\mathcal{B}}$$

(the matrix $P_{\mathcal{B}}$ was introduced in Section 4.4); this basically says that $\underset{\mathcal{E} \leftarrow \mathcal{B}}{P}$ is a very friendly matrix.

- > The post on January 17 has important examples of change-of-coordinates matrices in the context of the column space Col A and the row space Row A of a given matrix.
- ➤ Know Exercises 4 10, 13, 14.

5.1 Eigenvectors and eigenvalues.

- > Know the definition of an eigenvector and eigenvalue. It is a little tricky. Pay attention.
- ➤ Know the definition of an eigenspace and how to find an eigenspace corresponding to a given eigenvalue.
- \succ Know that the eigenvalues of a triangular matrix are the entries on its main diagonal.
- > **Theorem.** Eigenvectors corresponding to distinct eigenvalues are linearly independent. (Or, in a more formal mathematical language: Let A be an $n \times n$ matrix, let $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_m \in \mathbb{R}^n$ and $\lambda_1, \lambda_2, \ldots, \lambda_m \in \mathbb{R}$. If $A\mathbf{v}_k = \lambda_k \mathbf{v}_k$, $\mathbf{v}_k \neq \mathbf{0}$ and $\lambda_j \neq \lambda_k$ for all $j, k = 1, 2, \ldots, m$, then $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_m$ are linearly independent.

5.2 The characteristic equation.

- > Know that λ is an eigenvalue of an $n \times n$ matrix A if and only if $\det(A \lambda I) = 0$ (this is the characteristic equation for A)
- > Know how to calculate det $(A \lambda I)$ for 2×2 and 3×3 matrices, how to find eigenvalues and corresponding eigenvectors. Exercises 1-8, but do more and find eigenvectors as well. See the post of January 24.

5.3 Diagonalization.

- > Theorem. (The diagonalization theorem) An $n \times n$ matrix A is diagonalizable if and only if A has n linearly independent eigenvectors.
- > Know how to decide whether a given 2×2 and 3×3 matrix A, is diagonalizable or not; if it is diagonalizable, how to find invertible matrix P and diagonal matrix D such that $A = PDP^{-1}$. See the post of January 24.
- > Know how to decide whether a triangular matrix is diagonalizable or not. Consider the matrix A in Exercise 18 in Section 5.2 and find h such that the matrix A is diagonalizable.

5.4 Eigenvectors and linear transformations.

> Know that the matrix M with the property $[T\mathbf{v}]_{\mathcal{C}} = M[\mathbf{v}]_{\mathcal{B}}$ is called the **matrix of** T relative to the bases \mathcal{B} and \mathcal{C} and it is calculated as

$$M = \left[[T\mathbf{b}_1]_{\mathcal{C}} \cdots [T\mathbf{b}_n]_{\mathcal{C}} \right],$$

where T be a linear transformation from an m-dimensional vector space \mathcal{V} to an n-dimensional vector space $\mathcal{W}, \mathcal{B} = \{\mathbf{b}, \dots, \mathbf{b}_m\}$ is a basis for \mathcal{V} and \mathcal{C} is a basis for \mathcal{W} .

> Know that the matrix M with the property $[T\mathbf{v}]_{\mathcal{B}} = M[\mathbf{v}]_{\mathcal{B}}$ is called the **matrix of** T relative to the basis \mathcal{B} , it is denoted by $[T]_{\mathcal{B}}$ and it is calculated as

$$[T]_{\mathcal{B}} = \Big[[T\mathbf{b}_1]_{\mathcal{B}} \cdots [T\mathbf{b}_n]_{\mathcal{B}} \Big],$$

where $T : \mathcal{V} \to \mathcal{V}$ is a linear transformation on an *n*-dimensional vector space \mathcal{V} and $\mathcal{B} = \{\mathbf{b}, \dots, \mathbf{b}_n\}$ is a basis for \mathcal{V} .

- > **Theorem.** (The diagonal matrix representation) Let A, D, P be $n \times n$ matrices, where P is invertible, D is diagonal and $A = PDP^{-1}$. If \mathcal{B} is the basis for \mathbb{R}^n which consists of the columns of P and if $T : \mathbb{R}^n \to \mathbb{R}^n$ is given by $T\mathbf{v} = A\mathbf{v}$ for all $\mathbf{v} \in \mathbb{R}^n$, then $[T]_{\mathcal{B}} = D$.
- > See the relevant examples on January 28 and January 30.

5.5 Complex eigenvalues.

- \succ Know how to calculate complex eigenvalues and corresponding eigenvectors of 2×2 real matrices
- > Know that the most important class of 2×2 matrices with complex eigenvalues are rotation matrices; the matrix of the counterclockwise rotation about the origin by the angle θ measured in radians relative to the standard basis for \mathbb{R}^2 is

$$R_{\theta} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix};$$

the 2×2 matrix R_{θ} is called the **rotation matrix**.

> Theorem. (A "hidden rotation-dilation" theorem.) Let A be a real 2×2 matrix with a nonreal eigenvalue a - ib and a corresponding eigenvector $\mathbf{u} + i\mathbf{v}$. Here $a, b \in \mathbb{R}, b \neq 0$ and $\mathbf{u}, \mathbf{v} \in \mathbb{R}^2$. Then the 2×2 matrix $P = \begin{bmatrix} \mathbf{u} & \mathbf{v} \end{bmatrix}$

$$A = \alpha P \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} P^{-1},$$

where $\alpha = \sqrt{a^2 + b^2}$ and $\theta \in [0, 2\pi)$ is such that

$$\cos \theta = \frac{a}{\sqrt{a^2 + b^2}}, \quad \sin \theta = \frac{b}{\sqrt{a^2 + b^2}}.$$

> In relation to the previous item see the post on January 31.

6.1 Inner product, length, and orthogonality.

> Know the definition of the dot product in \mathbb{R}^n , its basic properties and calculations involving it. For

$$\mathbf{u} = \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{bmatrix} \in \mathbb{R}^n, \quad \mathbf{v} = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix} \in \mathbb{R}^n, \qquad \mathbf{u} \cdot \mathbf{v} = \sum_{k=1}^n u_k v_k = \mathbf{u}^\top \mathbf{v} = \mathbf{v}^\top \mathbf{u}.$$

- > Know the definition and the basic properties of the length of a vector in \mathbb{R}^n , its properties and calculations involving it.
- > Know the definition of the distance in \mathbb{R}^n and calculations involving it.
- > Know the definition of orthogonality in \mathbb{R}^n and calculations involving it.
- > Know the statement and the proof of the linear algebra version of the **Pythagorean theorem**.
- > Know the definition and the basic properties of the orthogonal complement in \mathbb{R}^n .
- ≻ Know that for a given $m \times n$ matrix A we have $(\text{Row } A)^{\perp} = \text{Nul} A$, $(\text{Col } A)^{\perp} = \text{Nul}(A^{\top})$, $(\text{Nul} A)^{\perp} = \text{Row } A$, and $(\text{Nul}(A^{\top}))^{\perp} = \text{Col } A$.
- > Know the geometric interpretation of the dot product in \mathbb{R}^2 and \mathbb{R}^3 :

$$\mathbf{u} \cdot \mathbf{v} = \|\mathbf{u}\| \, \|\mathbf{v}\| \cos \vartheta, \tag{1}$$

where **u** and **v** are vectors in \mathbb{R}^2 or in \mathbb{R}^3 , ϑ is the angle at the vertex *O* in the triangle *OAB* with *O* being the origin, *A* being the endpoint of **u** and *B* the endpoint of **v**.

6.2 Orthogonal sets.

- \succ Know the definition of an orthogonal set of vectors.
- > **Theorem.** (Linear independence of orthogonal sets.) Let $S = {\mathbf{u}_1, \ldots, \mathbf{u}_m}$ be a subset of \mathbb{R}^n . If S is an orthogonal set which consists of nonzero vectors, then S is linearly independent. You should know the proof of this statement.
- \succ Know the definition of an orthogonal bases.
- > Theorem. (Easy expansions with orthogonal bases.) Let $\{\mathbf{u}_1, \ldots, \mathbf{u}_m\}$ be an orthogonal basis of a subspace \mathcal{W} of \mathbb{R}^n . Then for every $\mathbf{y} \in \mathcal{W}$ we have

$$\mathbf{y} = \frac{\mathbf{y} \cdot \mathbf{u}_1}{\mathbf{u}_1 \cdot \mathbf{u}_1} \, \mathbf{u}_1 + \frac{\mathbf{y} \cdot \mathbf{u}_2}{\mathbf{u}_2 \cdot \mathbf{u}_2} \, \mathbf{u}_2 + \dots + \frac{\mathbf{y} \cdot \mathbf{u}_m}{\mathbf{u}_m \cdot \mathbf{u}_m} \, \mathbf{u}_m$$

> Know the definition of the orthogonal projection of a vector \mathbf{y} onto a nonzero vector \mathbf{u} : A vector $\hat{\mathbf{y}} = \alpha \mathbf{u}$ is called the **orthogonal projection of y onto u** if the difference $\mathbf{y} - \hat{\mathbf{y}}$ is orthogonal to \mathbf{u} . (Convince yourself that

$$\widehat{\mathbf{y}} = \frac{\mathbf{y} \cdot \mathbf{u}}{\mathbf{u} \cdot \mathbf{u}} \mathbf{u}$$

is the orthogonal projection of \mathbf{y} onto \mathbf{u} .)

- > Know how to do calculations with orthogonal projections.
- ➤ The definitions of orthonormal set of vectors, orthonormal basis, a matrix with orthonormal columns.
- > Know the characterization of a matrix with orthonormal columns: The columns of $n \times m$ matrix U are orthonormal if and only if $U^{\top}U = I_m$. (Please make sure that you understand the order of the matrix and its transpose in the previous identity.)
- \succ Know the properties of matrices with orthonormal columns.

6.3 Orthogonal projections.

- > Know the definition of the orthogonal projection of a vector \mathbf{y} onto a subspace \mathcal{W} : A vector $\hat{\mathbf{y}} \in \mathcal{W}$ is called the **orthogonal projection of y onto** \mathcal{W} if the difference $\mathbf{y} \hat{\mathbf{y}}$ is orthogonal to \mathcal{W} . The orthogonal projection of the vector \mathbf{y} onto a subspace \mathcal{W} is denoted by $\operatorname{Proj}_{\mathcal{W}} \mathbf{y}$.
- > **Theorem.** (The orthogonal decomposition theorem.) Let \mathcal{W} be a subspace of \mathbb{R}^n . Then each **y** in \mathbb{R}^n can be written uniquely in the form

$$\mathbf{y} = \widehat{\mathbf{y}} + \mathbf{z}$$

where $\widehat{\mathbf{y}} \in \mathcal{W}$ and $\mathbf{z} \in \mathcal{W}^{\perp}$. We have that $\widehat{\mathbf{y}} = \operatorname{Proj}_{\mathcal{W}} \mathbf{y}$. If $\{\mathbf{u}_1, \ldots, \mathbf{u}_m\}$ is an orthogonal basis for \mathcal{W} , then

$$\operatorname{Proj}_{\mathcal{W}} \mathbf{y} = \widehat{\mathbf{y}} = \frac{\mathbf{y} \cdot \mathbf{u}_1}{\mathbf{u}_1 \cdot \mathbf{u}_1} \mathbf{u}_1 + \frac{\mathbf{y} \cdot \mathbf{u}_2}{\mathbf{u}_2 \cdot \mathbf{u}_2} \mathbf{u}_2 + \dots + \frac{\mathbf{y} \cdot \mathbf{u}_m}{\mathbf{u}_m \cdot \mathbf{u}_m} \mathbf{u}_m$$
(2)

> Know that equation (2) simplifies if we assume that $\{\mathbf{u}_1, \ldots, \mathbf{u}_m\}$ is an **orthonormal basis** for \mathcal{W} ; then

$$\operatorname{Proj}_{\mathcal{W}} \mathbf{y} = \widehat{\mathbf{y}} = (\mathbf{y} \cdot \mathbf{u}_1) \, \mathbf{u}_1 + (\mathbf{y} \cdot \mathbf{u}_2) \, \mathbf{u}_2 + \dots + (\mathbf{y} \cdot \mathbf{u}_m) \, \mathbf{u}_m.$$
(3)

 \succ Know the amazing fact that equation (3) can be written as a matrix equation: Let

$$U = \begin{bmatrix} \mathbf{u}_1 & \cdots & \mathbf{u}_m \end{bmatrix}$$

be a matrix with orthonormal columns, then

$$\operatorname{Proj}_{\operatorname{Col} Q} \mathbf{y} = \widehat{\mathbf{y}} = (\mathbf{y} \cdot \mathbf{u}_1) \mathbf{u}_1 + (\mathbf{y} \cdot \mathbf{u}_2) \mathbf{u}_2 + \dots + (\mathbf{y} \cdot \mathbf{u}_m) \mathbf{u}_m = U U^{\top} \mathbf{y}.$$

The explanation for the last equality based on the definition of the matrix multiplication is as follows:

$$(\mathbf{y} \cdot \mathbf{u}_1) \mathbf{u}_1 + \dots + (\mathbf{y} \cdot \mathbf{u}_m) \mathbf{u}_m = \begin{bmatrix} \mathbf{u}_1 & \cdots & \mathbf{u}_m \end{bmatrix} \begin{bmatrix} \mathbf{y} \cdot \mathbf{u}_1 \\ \vdots \\ \mathbf{y} \cdot \mathbf{u}_m \end{bmatrix} = U \begin{bmatrix} (\mathbf{u}_1)^\top \mathbf{y} \\ \vdots \\ (\mathbf{u}_m)^\top \mathbf{y} \end{bmatrix} = U \begin{bmatrix} (\mathbf{u}_1)^\top \\ \vdots \\ (\mathbf{u}_m)^\top \end{bmatrix} \mathbf{y} = U U^\top \mathbf{y}.$$

- > Know how to prove the following fact: Let Q be a $n \times m$ matrix with orthonormal columns. Let $\mathbf{y} \in \mathbb{R}^n$. Prove that the projection of \mathbf{y} onto the column space of Q is given by the formula $QQ^T \mathbf{y}$.
- > Know how to solve Exercise 23. Given an $m \times n$ matrix A and a vector $\mathbf{v} \in \mathbb{R}^n$, know how to write \mathbf{v} as a sum of a vector in Nul A and a vector in Row A.
- \succ This probelm is related to Exercise 23 in Section 6.3. Given

$$A = \begin{bmatrix} 1 & 2 & 2 & 3 \\ 2 & 1 & 1 & 0 \\ 3 & 4 & 4 & 5 \end{bmatrix} \quad \text{and} \quad \mathbf{y} = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix},$$

find a vector $\mathbf{v} \in \operatorname{Nul} A$ and a vector $\mathbf{w} \in \operatorname{Row} A$ such that

$$\mathbf{y} = \mathbf{v} + \mathbf{w}.$$

6.4 The Gram-Schmidt orthogonalization.

> Know the Gram-Schmidt orthogonalization process: Let m and n be positive integers such that $2 \leq m \leq n$. Let $\{\mathbf{x}_1, \ldots, \mathbf{x}_m\}$ be a basis for a subspace \mathcal{W} of \mathbb{R}^n . The vectors $\mathbf{v}_1, \ldots, \mathbf{v}_m$ recursively defined by

$$\mathbf{v}_{1} = \mathbf{x}_{1},$$

$$\mathbf{v}_{2} = \mathbf{x}_{2} - \frac{\mathbf{x}_{2} \cdot \mathbf{v}_{1}}{\mathbf{v}_{1} \cdot \mathbf{v}_{1}} \mathbf{v}_{1},$$

$$\mathbf{v}_{3} = \mathbf{x}_{3} - \frac{\mathbf{x}_{3} \cdot \mathbf{v}_{1}}{\mathbf{v}_{1} \cdot \mathbf{v}_{1}} \mathbf{v}_{1} - \frac{\mathbf{x}_{3} \cdot \mathbf{v}_{2}}{\mathbf{v}_{2} \cdot \mathbf{v}_{2}} \mathbf{v}_{2},$$

$$\vdots$$

$$\mathbf{v}_{m} = \mathbf{x}_{m} - \frac{\mathbf{x}_{m} \cdot \mathbf{v}_{1}}{\mathbf{v}_{1} \cdot \mathbf{v}_{1}} \mathbf{v}_{1} - \frac{\mathbf{x}_{m} \cdot \mathbf{v}_{2}}{\mathbf{v}_{2} \cdot \mathbf{v}_{2}} \mathbf{v}_{2} - \dots - \frac{\mathbf{x}_{m} \cdot \mathbf{v}_{m-1}}{\mathbf{v}_{m-1} \cdot \mathbf{v}_{m-1}} \mathbf{v}_{m-1}.$$

have the following properties

- (i) $\{\mathbf{v}_1, \ldots, \mathbf{v}_m\}$ is an orthogonal basis for \mathcal{W} .
- (ii) For all $k \in \{1, \ldots, m\}$ we have $\operatorname{Span}\{\mathbf{v}_1, \ldots, \mathbf{v}_k\} = \operatorname{Span}\{\mathbf{x}_1, \ldots, \mathbf{x}_k\}.$

> Know the definition and how to construct a QR factorization of a matrix with linearly independent columns.

6.5 Lest square problems.

- > Know the definition of a least-squares solution of $A\mathbf{x} = \mathbf{b}$.
- > Know the theorem stating the connection between the set of least-squares solutions of $A\mathbf{x} = \mathbf{b}$ and the set of solutions of the normal equations $A^{\top}A\mathbf{x} = A^{\top}\mathbf{b}$.
- > Know the necessary and sufficient condition for the uniqueness of the least-squares solution of $A\mathbf{x} = \mathbf{b}$ (and its proof).
- > Know how to find the least-squares solution of $A\mathbf{x} = \mathbf{b}$ using the QR factorization of A.
- > Know how to prove the following statement: The matrices A and $A^T A$ have the same null space.

6.6 Applications to linear models.

- > Know how to find the least-squares line for a set of data points.
- \succ Know how to find the least-squares fitting for other curves.
- > Know how to find the least-squares plane for a set of data points.
- > Know how to solve Exercise 14.

6.7 Inner product spaces.

- > Know the definition of an (abstract) inner product.
- > Know the definitions of length, distance and orthogonality in an inner product space.
- \succ Know the statement and the proof of the abstract Pythagorean theorem.
- > Know how to find the best approximation in an inner product space.
- ➤ The Gram–Schmidt orthogonalization algorithm in a vector space of polynomials with an inner product defined by an integral; Exercise 25 which is done in detail on the class website on February 24.
- Know the statement and the proof of the Cauchy-Schwarz inequality (also known as the Cauchy-Bunyakovskyinequality). Know applications of the Cauchy-Bunyakovsky-Schwarz inequality, like in Exercises 19 and 20 (the inequality of arithmetic and geometric means).

7.1 Diagonalization of symmetric matrices.

- ➤ Know the theorem about the orthogonality of eigenspaces corresponding to distinct eigenvalues of a symmetric matrix and how to prove it.
- \succ Know how to prove that all the eigenvalues of a symmetric matrix are real.
- \succ Know the definition of an orthogonally diagonalizable matrix.
- ➤ Know the relationship between the concepts of a symmetric and an orthogonally diagonalizable matrix and how to prove the easier direction of this relationship.
- > Know how to prove that a symmetric 2×2 is orthogonally diagonalizable.

> Know the spectral decomposition formula (and its meaning) for symmetric matrices: Let $A = UDU^{\top}$ be an orthogonal diagonalization of a symmetric matrix A. Then

$$A = UDU^{\top} = \begin{bmatrix} \mathbf{u}_1 & \mathbf{u}_2 & \cdots & \mathbf{u}_n \end{bmatrix} \begin{bmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & 0 \\ 0 & 0 & \cdots & \lambda_n \end{bmatrix} \begin{bmatrix} \mathbf{u}_1^{\top} \\ \mathbf{u}_2^{\top} \\ \vdots \\ \mathbf{u}_n^{\top} \end{bmatrix}$$
$$= \begin{bmatrix} \lambda_1 \mathbf{u}_1 & \lambda_2 \mathbf{u}_2 & \cdots & \lambda_n \mathbf{u}_n \end{bmatrix} \begin{bmatrix} \mathbf{u}_1^{\top} \\ \mathbf{u}_2^{\top} \\ \vdots \\ \mathbf{u}_n^{\top} \end{bmatrix} = \lambda_1 \mathbf{u}_1 \mathbf{u}_1^{\top} + \lambda_2 \mathbf{u}_2 \mathbf{u}_2^{\top} + \cdots + \lambda_n \mathbf{u}_n \mathbf{u}_n^{\top}$$

(Here, for $k \in \{1, ..., n\}$ the $n \times n$ matrix $\mathbf{u}_k \mathbf{u}_k^{\top}$ is the orthogonal projection matrix onto the unit vector \mathbf{u}_k .)

7.2 Quadratic forms.

- \succ Know the definition of a quadratic form.
- > Know how to transform a quadratic form into a quadratic form with only square terms.
- Know how to classify quadratic forms, including positive semidefinite and negative semidefinite forms.

7.3 Constrained optimization.

 \succ Know how to solve problems like Example 1 and Example 3 (also including the minimum value).

7.4 The singular value decomposition.

> Know the definition of the singular value decomposition of a real $m \times n$ matrix A: A singular value decomposition of a real $m \times n$ matrix A is a factorization of the form

$$A = U \Sigma V^{\top}$$

where U is $m \times m$ orthogonal matrix, V is $n \times n$ orthogonal matrix and Σ is $m \times n$ matrix of the form

$$\Sigma = \begin{bmatrix} \sigma_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \sigma_r \end{bmatrix} \begin{bmatrix} 0_{r \times (n-r)} \\ 0_{(m-r) \times r} \end{bmatrix}$$

where $r = \operatorname{rank} A$, $\begin{bmatrix} \sigma_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \sigma_r \end{bmatrix}$ is $r \times r$ diagonal matrix with positive entries on the diagonal

and $\sigma_1 \ge \sigma_2 \ge \cdots \ge \sigma_r > 0$ and all the remaining entries of Σ are zeros. The values $\sigma_1, \sigma_2, \ldots, \sigma_r$ are called the **singular values** of A. The columns of V are called **right singular vectors** of A and the columns of U are called **left singular vectors** of A.

➤ Know the consequences of the definition of a singular value decomposition. (For example, $A^{\top} = V\Sigma^{\top}U^{\top}$, $A^{\top}A = V\Sigma^{\top}\Sigma V^{\top}$, where $\Sigma^{\top}\Sigma$ is $n \times n$ diagonal matrix with the eigenvalues of $A^{\top}A$ on the diagonal and the positive entries on the diagonal are equal to $\sigma_1^2, \ldots, \sigma_r^2$.)

- > Know how a singular value decomposition of A contains orthonormal bases for all four fundamental subspaces associated with A. This is summarized in Figure 4 on page 423:
 - * the columns of V form an orthonormal basis for \mathbb{R}^n ,
 - * the first r columns of V form an orthonormal basis for Row A,
 - * the last n r columns of V form an orthonormal basis for Nul A,
 - * the columns of U form an orthonormal basis for \mathbb{R}^m ,
 - * the first r columns of U form an orthonormal basis for Col A,
 - * the last m r columns of U form an orthonormal basis for $Nul(A^{\top})$.
- \succ Review the singular value decomposition of the matrix we found on Wikipedia which we did in our first online class; see the post on March 11.