4.1 Vector spaces and subspaces

$>$ Know the definition of a vector space and how to decide whether a given set is a vector space or not.
$>$ Know the definition of a subspace of a vector space and how to decide whether a given subset of a vector space is a subspace or not.
$>$ For given vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{m}$ in a vector space \mathcal{V} know the definition of a linear combination and the span, denoted by $\operatorname{Span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{m}\right\}$.
$>$ Know that $\operatorname{Span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{m}\right\}$ is a subspace of \mathcal{V}.

4.2 Null spaces, column spaces, and linear transformations

$>$ For a given $m \times n$ matrix A know the definitions of $\operatorname{Nul} A, \operatorname{Col} A$ and Row A and how to find bases for these subspaces. (See the post of January 17, Section 4.3 and Section 4.5.)

4.3 Linearly independent sets; bases

$>$ Know the definition of linearly independent vectors and a basis for a subspace.
$>$ Know how to decide whether given vectors from \mathbb{R}^{n} are linearly independent or not.
$>$ Know how to prove that the monomials $\mathbf{q}_{0}(x)=1, \mathbf{q}_{1}(x)=x, \mathbf{q}_{2}(x)=x^{2}$, are linearly independent. This proof is presented in the post on January 10.
$>$ Know how to find a basis of a given subspace of \mathbb{P}_{2}; see examples in the post on January 10 .

4.4 Coordinate systems.

$>$ Let \mathcal{V} be a vector space and let \mathcal{B} be a basis for \mathcal{V}. Know: the unique representation theorem, the definition of a coordinate mapping, the meaning of the symbol $[\mathbf{v}]_{\mathcal{B}}$ for a given vector \mathbf{v} in \mathcal{V}.
$>$ Theorem 8: Given a basis $\mathcal{B}=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right\}$ of a vector space \mathcal{V}, the coordinate mapping $\mathbf{v} \mapsto[\mathbf{v}]_{\mathcal{B}}$ is a one-to-one linear transformation from \mathcal{V} onto \mathbb{R}^{n}. In other words, the coordinate mapping $\mathbf{v} \mapsto[\mathbf{v}]_{\mathcal{B}}$ is a linear bijection from \mathcal{V} to \mathbb{R}^{n}.
$>$ Know how a coordinate mapping for polynomials works, Examples 5 and 6. See also the post on January 10.
> Know Exercises 10, 11, 13

4.5 The dimension of a vector space

$>$ The definition of a finite dimensional vector space and the definition of the dimension of a finite dimensional vector space

4.6 Rank

$>$ Know the definition of the rank of a matrix, denoted by $\operatorname{rank} A$.
$>$ Let m and n be positive integers. For a given $m \times n$ matrix A know the relationship between the following nonnegative integers:

$$
\operatorname{dim}(\operatorname{Nul} A), \quad \operatorname{dim}(\operatorname{Col} A), \quad \operatorname{dim}(\operatorname{Row} A), \quad \operatorname{rank} A, \quad m, \quad n
$$

4.7 Change of bases (in fact: Change of coordinates).

$>$ Know that the matrix M with the property $[\mathbf{v}]_{\mathcal{C}}=M[\mathbf{v}]_{\mathcal{B}}$ is called the change-of-coordinates matrix from \mathcal{B} to \mathcal{C}. It is denoted $\underset{\mathcal{C} \leftarrow \mathcal{B}}{P}$ and it is calculated as

$$
\underset{\mathcal{C} \leftarrow \mathcal{B}}{P}=\left[\begin{array}{lll}
{\left[\mathbf{b}_{1}\right]_{\mathcal{C}}} & \cdots & \left.\left[\mathbf{b}_{n}\right]_{\mathcal{C}}\right] ;
\end{array}\right.
$$

here $\mathcal{B}=\left\{\mathbf{b}, \ldots, \mathbf{b}_{n}\right\}$ and \mathcal{C} are two bases of an n-dimensional vector space \mathcal{V} and $[\mathbf{v}]_{\mathcal{B}} \in \mathbb{R}^{n}$ denotes the coordinate vector of $\mathbf{v} \in \mathcal{V}$ relative to the basis \mathcal{B}.
$>\binom{P}{\mathcal{C} \leftarrow \mathcal{B}}^{-1}=\underset{\mathcal{B} \leftarrow \mathcal{C}}{P}$
$>$ The post on February 1 has a graphical example of change-of-coordinates matrix.
$>$ Know that there is a special basis of \mathbb{R}^{n}, called the standard basis, which consists of the columns of the identify matrix I_{n}. It is denoted by \mathcal{E}. This notattion comes from the fact that the vectors in this basis are commonly denoted by $\mathbf{e}_{1}, \cdots, \mathbf{e}_{n}$.
$>$ Know that for a basis $\mathcal{B}=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right\}$ for \mathbb{R}^{n} (this is a special case) we have

$$
\underset{\mathcal{E} \leftarrow \mathcal{B}}{P}=\left[\mathbf{b}_{1} \cdots \mathbf{b}_{n}\right]=P_{\mathcal{B}}
$$

(the matrix $P_{\mathcal{B}}$ was introduced in Section 4.4); this basically says that $\underset{\mathcal{E} \leftarrow \mathcal{B}}{P}$ is a very friendly matrix.
$>$ The post on January 17 has important examples of change-of-coordinates matrices in the context of the column space $\operatorname{Col} A$ and the row space Row A of a given matrix.
$>$ Know Exercises 4-10, 13, 14.

5.1 Eigenvectors and eigenvalues.

$>$ Know the definition of an eigenvector and eigenvalue. It is a little tricky. Pay attention.
$>$ Know the definition of an eigenspace and how to find an eigenspace corresponding to a given eigenvalue.
$>$ Know that the eigenvalues of a triangular matrix are the entries on its main diagonal.
$>$ Theorem. Eigenvectors corresponding to distinct eigenvalues are linearly independent. (Or, in a more formal mathematical language: Let A be an $n \times n$ matrix, let $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{m} \in \mathbb{R}^{n}$ and $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{m} \in \mathbb{R}$. If $A \mathbf{v}_{k}=\lambda_{k} \mathbf{v}_{k}, \mathbf{v}_{k} \neq \mathbf{0}$ and $\lambda_{j} \neq \lambda_{k}$ for all $j, k=1,2, \ldots, m$, then $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{m}$ are linearly independent.

5.2 The characteristic equation.

$>$ Know that λ is an eigenvalue of an $n \times n$ matrix A if and only if $\operatorname{det}(A-\lambda I)=0$ (this is the characteristic equation for A)
$>$ Know how to calculate $\operatorname{det}(A-\lambda I)$ for 2×2 and 3×3 matrices, how to find eigenvalues and corresponding eigenvectors. Exercises 1-8, but do more and find eigenvectors as well. See the post of January 24.

5.3 Diagonalization.

$>$ Theorem. (The diagonalization theorem) An $n \times n$ matrix A is diagonalizable if and only if A has n linearly independent eigenvectors.
$>$ Know how to decide whether a given 2×2 and 3×3 matrix A, is diagonalizable or not; if it is diagonalizable, how to find invertible matrix P and diagonal matrix D such that $A=P D P^{-1}$. See the post of January 24.
$>$ Know how to decide whether a triangular matrix is diagonalizable or not. Consider the matrix A in Exercise 18 in Section 5.2 and find h such that the matrix A is diagonalizable.

5.4 Eigenvectors and linear transformations.

$>$ Know that the matrix M with the property $[T \mathbf{v}]_{\mathcal{C}}=M[\mathbf{v}]_{\mathcal{B}}$ is called the matrix of T relative to the bases \mathcal{B} and \mathcal{C} and it is calculated as

$$
M=\left[\left[T \mathbf{b}_{1}\right]_{\mathcal{C}} \cdots\left[T \mathbf{b}_{n}\right]_{\mathcal{C}}\right],
$$

where T be a linear transformation from an m-dimensional vector space \mathcal{V} to an n-dimensional vector space $\mathcal{W}, \mathcal{B}=\left\{\mathbf{b}, \ldots, \mathbf{b}_{m}\right\}$ is a basis for \mathcal{V} and \mathcal{C} is a basis for \mathcal{W}.
$>$ Know that the matrix M with the property $[T \mathbf{v}]_{\mathcal{B}}=M[\mathbf{v}]_{\mathcal{B}}$ is called the matrix of T relative to the basis \mathcal{B}, it is denoted by $[T]_{\mathcal{B}}$ and it is calculated as

$$
[T]_{\mathcal{B}}=\left[\begin{array}{lll}
{\left[T \mathbf{b}_{1}\right]_{\mathcal{B}}} & \cdots & {\left[T \mathbf{b}_{n}\right]_{\mathcal{B}}}
\end{array}\right],
$$

where $T: \mathcal{V} \rightarrow \mathcal{V}$ is a linear transformation on an n-dimensional vector space \mathcal{V} and $\mathcal{B}=$ $\left\{\mathbf{b}, \ldots, \mathbf{b}_{n}\right\}$ is a basis for \mathcal{V}.
$>$ Theorem. (The diagonal matrix representation) Let A, D, P be $n \times n$ matrices, where P is invertible, D is diagonal and $A=P D P^{-1}$. If \mathcal{B} is the basis for \mathbb{R}^{n} which consists of the columns of P and if $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is given by $T \mathbf{v}=A \mathbf{v}$ for all $\mathbf{v} \in \mathbb{R}^{n}$, then $[T]_{\mathcal{B}}=D$.
$>$ See the relevant examples on January 28 and January 30.

5.5 Complex eigenvalues.

$>$ Know how to calculate complex eigenvalues and corresponding eigenvectors of 2×2 real matrices
$>$ Know that the most important class of 2×2 matrices with complex eigenvalues are rotation matrices; the matrix of the counterclockwise rotation about the origin by the angle θ measured in radians relative to the standard basis for \mathbb{R}^{2} is

$$
R_{\theta}=\left[\begin{array}{rr}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right] ;
$$

the 2×2 matrix R_{θ} is called the rotation matrix.
$>$ Theorem. (A "hidden rotation-dilation" theorem.) Let A be a real 2×2 matrix with a nonreal eigenvalue $a-i b$ and a corresponding eigenvector $\mathbf{u}+i \mathbf{v}$. Here $a, b \in \mathbb{R}, b \neq 0$ and $\mathbf{u}, \mathbf{v} \in \mathbb{R}^{2}$. Then the 2×2 matrix

$$
P=\left[\begin{array}{ll}
\mathbf{u} & \mathbf{v}
\end{array}\right]
$$

is invertible and

$$
A=\alpha P\left[\begin{array}{rr}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right] P^{-1},
$$

where $\alpha=\sqrt{a^{2}+b^{2}}$ and $\theta \in[0,2 \pi)$ is such that

$$
\cos \theta=\frac{a}{\sqrt{a^{2}+b^{2}}}, \quad \sin \theta=\frac{b}{\sqrt{a^{2}+b^{2}}} .
$$

$>$ In relation to the previous item see the post on January 31.

6.1 Inner product, length, and orthogonality.

$>$ Know the definition of the dot product in \mathbb{R}^{n}, its basic properties and calculations involving it. For

$$
\mathbf{u}=\left[\begin{array}{c}
u_{1} \\
u_{2} \\
\vdots \\
u_{n}
\end{array}\right] \in \mathbb{R}^{n}, \quad \mathbf{v}=\left[\begin{array}{c}
v_{1} \\
v_{2} \\
\vdots \\
v_{n}
\end{array}\right] \in \mathbb{R}^{n}, \quad \mathbf{u} \cdot \mathbf{v}=\sum_{k=1}^{n} u_{k} v_{k}=\mathbf{u}^{\top} \mathbf{v}=\mathbf{v}^{\top} \mathbf{u}
$$

$>$ Know the definition and the basic properties of the length of a vector in \mathbb{R}^{n}, its properties and calculations involving it.
$>$ Know the definition of the distance in \mathbb{R}^{n} and calculations involving it.
$>$ Know the definition of orthogonality in \mathbb{R}^{n} and calculations involving it.
$>$ Know the statement and the proof of the linear algebra version of the Pythagorean theorem.
$>$ Know the definition and the basic properties of the orthogonal complement in \mathbb{R}^{n}.
$>$ Know that for a given $m \times n$ matrix A we have $(\operatorname{Row} A)^{\perp}=\operatorname{Nul} A,(\operatorname{Col} A)^{\perp}=\operatorname{Nul}\left(A^{\top}\right)$, $(\operatorname{Nul} A)^{\perp}=\operatorname{Row} A$, and $\left(\operatorname{Nul}\left(A^{\top}\right)\right)^{\perp}=\operatorname{Col} A$.
$>$ Know the geometric interpretation of the dot product in \mathbb{R}^{2} and \mathbb{R}^{3} :

$$
\begin{equation*}
\mathbf{u} \cdot \mathbf{v}=\|\mathbf{u}\|\|\mathbf{v}\| \cos \vartheta \tag{1}
\end{equation*}
$$

where \mathbf{u} and \mathbf{v} are vectors in \mathbb{R}^{2} or in $\mathbb{R}^{3}, \vartheta$ is the angle at the vertex O in the triangle $O A B$ with O being the origin, A being the endpoint of \mathbf{u} and B the endpoint of \mathbf{v}.

6.2 Orthogonal sets.

$>$ Know the definition of an orthogonal set of vectors.
$>$ Theorem. (Linear independence of orthogonal sets.) Let $\mathcal{S}=\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{m}\right\}$ be a subset of \mathbb{R}^{n}. If \mathcal{S} is an orthogonal set which consists of nonzero vectors, then \mathcal{S} is linearly independent. You should know the proof of this statement.
$>$ Know the definition of an orthogonal bases.
$>$ Theorem. (Easy expansions with orthogonal bases.) Let $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{m}\right\}$ be an orthogonal basis of a subspace \mathcal{W} of \mathbb{R}^{n}. Then for every $\mathbf{y} \in \mathcal{W}$ we have

$$
\mathbf{y}=\frac{\mathbf{y} \cdot \mathbf{u}_{1}}{\mathbf{u}_{1} \cdot \mathbf{u}_{1}} \mathbf{u}_{1}+\frac{\mathbf{y} \cdot \mathbf{u}_{2}}{\mathbf{u}_{2} \cdot \mathbf{u}_{2}} \mathbf{u}_{2}+\cdots+\frac{\mathbf{y} \cdot \mathbf{u}_{m}}{\mathbf{u}_{m} \cdot \mathbf{u}_{m}} \mathbf{u}_{m}
$$

$>$ Know the definition of the orthogonal projection of a vector \mathbf{y} onto a nonzero vector \mathbf{u} : A vector $\widehat{\mathbf{y}}=\alpha \mathbf{u}$ is called the orthogonal projection of \mathbf{y} onto \mathbf{u} if the difference $\mathbf{y}-\widehat{\mathbf{y}}$ is orthogonal to \mathbf{u}. (Convince yourself that

$$
\widehat{\mathbf{y}}=\frac{\mathbf{y} \cdot \mathbf{u}}{\mathbf{u} \cdot \mathbf{u}} \mathbf{u}
$$

is the orthogonal projection of \mathbf{y} onto \mathbf{u}.)
$>$ Know how to do calculations with orthogonal projections.
$>$ The definitions of orthonormal set of vectors, orthonormal basis, a matrix with orthonormal columns.
$>$ Know the characterization of a matrix with orthonormal columns: The columns of $n \times m$ matrix U are orthonormal if and only if $U^{\top} U=I_{m}$. (Please make sure that you understand the order of the matrix and its transpose in the previous identity.)
$>$ Know the properties of matrices with orthonormal columns.

6.3 Orthogonal projections.

$>$ Know the definition of the orthogonal projection of a vector \mathbf{y} onto a subspace \mathcal{W} : A vector $\widehat{\mathbf{y}} \in \mathcal{W}$ is called the orthogonal projection of \mathbf{y} onto \mathcal{W} if the difference $\mathbf{y}-\widehat{\mathbf{y}}$ is orthogonal to \mathcal{W}. The orthogonal projection of the vector \mathbf{y} onto a subspace \mathcal{W} is denoted by $\operatorname{Proj}_{\mathcal{W}} \mathbf{y}$.
$>$ Theorem. (The orthogonal decomposition theorem.) Let \mathcal{W} be a subspace of \mathbb{R}^{n}. Then each \mathbf{y} in \mathbb{R}^{n} can be written uniquely in the form

$$
\mathbf{y}=\widehat{\mathbf{y}}+\mathbf{z}
$$

where $\widehat{\mathbf{y}} \in \mathcal{W}$ and $\mathbf{z} \in \mathcal{W}^{\perp}$. We have that $\widehat{\mathbf{y}}=\operatorname{Proj}_{\mathcal{W}} \mathbf{y}$. If $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{m}\right\}$ is an orthogonal basis for \mathcal{W}, then

$$
\begin{equation*}
\operatorname{Proj}_{\mathcal{W}} \mathbf{y}=\widehat{\mathbf{y}}=\frac{\mathbf{y} \cdot \mathbf{u}_{1}}{\mathbf{u}_{1} \cdot \mathbf{u}_{1}} \mathbf{u}_{1}+\frac{\mathbf{y} \cdot \mathbf{u}_{2}}{\mathbf{u}_{2} \cdot \mathbf{u}_{2}} \mathbf{u}_{2}+\cdots+\frac{\mathbf{y} \cdot \mathbf{u}_{m}}{\mathbf{u}_{m} \cdot \mathbf{u}_{m}} \mathbf{u}_{m} \tag{2}
\end{equation*}
$$

$>$ Know that equation (2) simplifies if we assume that $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{m}\right\}$ is an orthonormal basis for \mathcal{W}; then

$$
\begin{equation*}
\operatorname{Proj}_{\mathcal{W}} \mathbf{y}=\widehat{\mathbf{y}}=\left(\mathbf{y} \cdot \mathbf{u}_{1}\right) \mathbf{u}_{1}+\left(\mathbf{y} \cdot \mathbf{u}_{2}\right) \mathbf{u}_{2}+\cdots+\left(\mathbf{y} \cdot \mathbf{u}_{m}\right) \mathbf{u}_{m} \tag{3}
\end{equation*}
$$

$>$ Know the amazing fact that equation (3) can be written as a matrix equation: Let

$$
U=\left[\begin{array}{lll}
\mathbf{u}_{1} & \cdots & \mathbf{u}_{m}
\end{array}\right]
$$

be a matrix with orthonormal columns, then

$$
\operatorname{Proj}_{\operatorname{Col} Q} \mathbf{y}=\widehat{\mathbf{y}}=\left(\mathbf{y} \cdot \mathbf{u}_{1}\right) \mathbf{u}_{1}+\left(\mathbf{y} \cdot \mathbf{u}_{2}\right) \mathbf{u}_{2}+\cdots+\left(\mathbf{y} \cdot \mathbf{u}_{m}\right) \mathbf{u}_{m}=U U^{\top} \mathbf{y}
$$

The explanation for the last equality based on the definition of the matrix multiplication is as follows:

$$
\left(\mathbf{y} \cdot \mathbf{u}_{1}\right) \mathbf{u}_{1}+\cdots+\left(\mathbf{y} \cdot \mathbf{u}_{m}\right) \mathbf{u}_{m}=\left[\mathbf{u}_{1} \cdots \mathbf{u}_{m}\right]\left[\begin{array}{c}
\mathbf{y} \cdot \mathbf{u}_{1} \\
\vdots \\
\mathbf{y} \cdot \mathbf{u}_{m}
\end{array}\right]=U\left[\begin{array}{c}
\left(\mathbf{u}_{1}\right)^{\top} \mathbf{y} \\
\vdots \\
\left(\mathbf{u}_{m}\right)^{\top} \mathbf{y}
\end{array}\right]=U\left[\begin{array}{c}
\left(\mathbf{u}_{1}\right)^{\top} \\
\vdots \\
\left(\mathbf{u}_{m}\right)^{\top}
\end{array}\right] \mathbf{y}=U U^{\top} \mathbf{y} .
$$

$>$ Know how to prove the following fact: Let Q be a $n \times m$ matrix with orthonormal columns. Let $\mathbf{y} \in \mathbb{R}^{n}$. Prove that the projection of \mathbf{y} onto the column space of Q is given by the formula $Q Q^{T} \mathbf{y}$.
$>$ Know how to solve Exercise 23. Given an $m \times n$ matrix A and a vector $\mathbf{v} \in \mathbb{R}^{n}$, know how to write \mathbf{v} as a sum of a vector in $\operatorname{Nul} A$ and a vector in $\operatorname{Row} A$.
$>$ This probelm is related to Exercse 23 in Section 6.3. Given

$$
A=\left[\begin{array}{llll}
1 & 2 & 2 & 3 \\
2 & 1 & 1 & 0 \\
3 & 4 & 4 & 5
\end{array}\right] \quad \text { and } \quad \mathbf{y}=\left[\begin{array}{l}
1 \\
2 \\
3 \\
4
\end{array}\right]
$$

find a vector $\mathbf{v} \in \operatorname{Nul} A$ and a vector $\mathbf{w} \in \operatorname{Row} A$ such that

$$
\mathbf{y}=\mathbf{v}+\mathbf{w} .
$$

6.4 The Gram-Schmidt orthogonalization.

$>$ Know the Gram-Schmidt orthogonalization process: Let m and n be positive integers such that $2 \leq m \leq n$. Let $\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{m}\right\}$ be a basis for a subspace \mathcal{W} of \mathbb{R}^{n}. The vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{m}$ recursively defined by

$$
\begin{aligned}
& \mathbf{v}_{1}=\mathbf{x}_{1}, \\
& \mathbf{v}_{2}=\mathbf{x}_{2}-\frac{\mathbf{x}_{2} \cdot \mathbf{v}_{1}}{\mathbf{v}_{1} \cdot \mathbf{v}_{1}} \mathbf{v}_{1}, \\
& \mathbf{v}_{3}=\mathbf{x}_{3}-\frac{\mathbf{x}_{3} \cdot \mathbf{v}_{1}}{\mathbf{v}_{1} \cdot \mathbf{v}_{1}} \mathbf{v}_{1}-\frac{\mathbf{x}_{3} \cdot \mathbf{v}_{2}}{\mathbf{v}_{2} \cdot \mathbf{v}_{2}} \mathbf{v}_{2}, \\
& \vdots \\
& \mathbf{v}_{m}=\mathbf{x}_{m}-\frac{\mathbf{x}_{m} \cdot \mathbf{v}_{1}}{\mathbf{v}_{1} \cdot \mathbf{v}_{1}} \mathbf{v}_{1}-\frac{\mathbf{x}_{m} \cdot \mathbf{v}_{2}}{\mathbf{v}_{2} \cdot \mathbf{v}_{2}} \mathbf{v}_{2}-\cdots-\frac{\mathbf{x}_{m} \cdot \mathbf{v}_{m-1}}{\mathbf{v}_{m-1} \cdot \mathbf{v}_{m-1}} \mathbf{v}_{m-1},
\end{aligned}
$$

have the following properties
(i) $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{m}\right\}$ is an orthogonal basis for \mathcal{W}.
(ii) For all $k \in\{1, \ldots, m\}$ we have $\operatorname{Span}\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right\}=\operatorname{Span}\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{k}\right\}$.
$>$ Know the definition and how to construct a $Q R$ factorization of a matrix with linearly independent columns.

6.5 Lest square problems.

$>$ Know the definition of a least-squares solution of $A \mathbf{x}=\mathbf{b}$.
$>$ Know the theorem stating the connection between the set of least-squares solutions of $A \mathbf{x}=\mathbf{b}$ and the set of solutions of the normal equations $A^{\top} A \mathbf{x}=A^{\top} \mathbf{b}$.
$>$ Know the necessary and sufficient condition for the uniqueness of the least-squares solution of $A \mathbf{x}=\mathbf{b}$ (and its proof).
$>$ Know how to find the least-squares solution of $A \mathbf{x}=\mathbf{b}$ using the $Q R$ factorization of A.
$>$ Know how to prove the following statement: The matrices A and $A^{T} A$ have the same null space.

6.6 Applications to linear models.

$>$ Know how to find the least-squares line for a set of data points.
> Know how to find the least-squares fitting for other curves.
$>$ Know how to find the least-squares plane for a set of data points.
> Know how to solve Exercise 14.

6.7 Inner product spaces.

$>$ Know the definition of an (abstract) inner product.
$>$ Know the definitions of length, distance and orthogonality in an inner product space.
$>$ Know the statement and the proof of the abstract Pythagorean theorem.
$>$ Know how to find the best approximation in an inner product space.
> The Gram-Schmidt orthogonalization algorithm in a vector space of polynomials with an inner product defined by an integral; Exercise 25 which is done in detail on the class website on February 24.
> Know the statement and the proof of the Cauchy-Schwarz inequality (also known as the Cauchy-Bunyakovskyinequality). Know applications of the Cauchy-Bunyakovsky-Schwarz inequality, like in Exercises 19 and 20 (the inequality of arithmetic and geometric means).

7.1 Diagonalization of symmetric matrices.

$>$ Know the theorem about the orthogonality of eigenspaces corresponding to distinct eigenvalues of a symmetric matrix and how to prove it.
$>$ Know how to prove that all the eigenvalues of a symmetric matrix are real.
$>$ Know the definition of an orthogonally diagonalizable matrix.
$>$ Know the relationship between the concepts of a symmetric and an orthogonally diagonalizable matrix and how to prove the easier direction of this relationship.
$>$ Know how to prove that a symmetric 2×2 is orthogonally diagonalizable.
$>$ Know the spectral decomposition formula (and its meaning) for symmetric matrices: Let $A=$ $U D U^{\top}$ be an orthogonal diagonalization of a symmetric matrix A. Then

$$
\begin{aligned}
A & =U D U^{\top}=\left[\begin{array}{llll}
\mathbf{u}_{1} & \mathbf{u}_{2} & \cdots & \mathbf{u}_{n}
\end{array}\right]\left[\begin{array}{cccc}
\lambda_{1} & 0 & \cdots & 0 \\
0 & \lambda_{2} & \cdots & 0 \\
\vdots & \vdots & \ddots & 0 \\
0 & 0 & \cdots & \lambda_{n}
\end{array}\right]\left[\begin{array}{c}
\mathbf{u}_{1}^{\top} \\
\mathbf{u}_{2}^{\top} \\
\vdots \\
\mathbf{u}_{n}^{\top}
\end{array}\right] \\
& =\left[\begin{array}{llll}
\lambda_{1} \mathbf{u}_{1} & \lambda_{2} \mathbf{u}_{2} & \cdots & \lambda_{n} \mathbf{u}_{n}
\end{array}\right]\left[\begin{array}{c}
\mathbf{u}_{1}^{\top} \\
\mathbf{u}_{2}^{\top} \\
\vdots \\
\mathbf{u}_{n}^{\top}
\end{array}\right]=\lambda_{1} \mathbf{u}_{1} \mathbf{u}_{1}^{\top}+\lambda_{2} \mathbf{u}_{2} \mathbf{u}_{2}^{\top}+\cdots+\lambda_{n} \mathbf{u}_{n} \mathbf{u}_{n}^{\top}
\end{aligned}
$$

(Here, for $k \in\{1, \ldots, n\}$ the $n \times n$ matrix $\mathbf{u}_{k} \mathbf{u}_{k}^{\top}$ is the orthogonal projection matrix onto the unit vector \mathbf{u}_{k}.)

7.2 Quadratic forms.

$>$ Know the definition of a quadratic form.
$>$ Know how to transform a quadratic form into a quadratic form with only square terms.
$>$ Know how to classify quadratic forms, including positive semidefinite and negative semidefinite forms.

7.3 Constrained optimization.

> Know how to solve problems like Example 1 and Example 3 (also including the minimum value).

7.4 The singular value decomposition.

$>$ Know the definition of the singular value decomposition of a real $m \times n$ matrix A : A singular value decomposition of a real $m \times n$ matrix A is a factorization of the form

$$
A=U \Sigma V^{\top}
$$

where U is $m \times m$ orthogonal matrix, V is $n \times n$ orthogonal matrix and Σ is $m \times n$ matrix of the form

$$
\Sigma=\left[\begin{array}{ccc|c}
\sigma_{1} & \cdots & 0 & \\
\vdots & \ddots & \vdots & 0_{r \times(n-r)} \\
0 & \cdots & \sigma_{r} & \\
\hline 0_{(m-r) \times r} & 0_{(m-r) \times(n-r)}
\end{array}\right]
$$

where $r=\operatorname{rank} A,\left[\begin{array}{ccc}\sigma_{1} & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \sigma_{r}\end{array}\right]$ is $r \times r$ diagonal matrix with positive entries on the diagonal and $\sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{r}>0$ and all the remaining entries of Σ are zeros. The values $\sigma_{1}, \sigma_{2}, \ldots, \sigma_{r}$ are called the singular values of A. The columns of V are called right singular vectors of A and the columns of U are called left singular vectors of A.
$>$ Know the consequences of the definition of a singular value decomposition. (For example, $A^{\top}=$ $V \Sigma^{\top} U^{\top}, A^{\top} A=V \Sigma^{\top} \Sigma V^{\top}$, where $\Sigma^{\top} \Sigma$ is $n \times n$ diagonal matrix with the eigenvalues of $A^{\top} A$ on the diagonal and the positive entries on the diagonal are equal to $\sigma_{1}^{2}, \ldots, \sigma_{r}^{2}$.)
$>$ Know how a singular value decomposition of A contains orthonormal bases for all four fundamental subspaces associated with A ．This is summarized in Figure 4 on page 423：

> 米 the columns of V form an orthonormal basis for \mathbb{R}^{n},
> 米 the first r columns of V form an orthonormal basis for $\operatorname{Row} A$,
> 米 the last $n-r$ columns of V form an orthonormal basis for $\operatorname{Nul} A$,
> 米 the columns of U form an orthonormal basis for \mathbb{R}^{m},
> 米 the first r columns of U form an orthonormal basis for $\operatorname{Col} A$,
> 米 the last $m-r$ columns of U form an orthonormal basis for $\operatorname{Nul}\left(A^{\top}\right)$.
$>$ Review the singular value decomposition of the matrix we found on Wikipedia which we did in our first online class；see the post on March 11.

