The first step towards a construction of the Cesaro fractal
May 6,2020,

We can think of $\overline{A B}$ as being of length 1
We need to calculate $x$ and $y$ as functions of $\alpha . \alpha \in[0, \pi / 2]$

$$
\begin{aligned}
& x+y=1 / 2 \\
& \sin \alpha=\frac{y}{x}=\frac{\text { opposite leg }}{\text { hypothens }} \\
& y=x \sin \alpha \\
& x+x \sin \alpha=1 / 2 \\
& x=\frac{1 / 2}{1+\sin \alpha} \\
& y=\frac{1}{2}-\frac{1}{2} \frac{1}{1+\sin \alpha}=\frac{1}{2} \frac{1+\sin \alpha-1}{1+\sin \alpha} \\
& y=\frac{1}{2} \frac{\sin \alpha}{1+\sin \alpha} \\
& \text { We also need } z=\sqrt{x^{2}-y^{2}} \\
& z=\frac{1 / 2}{(1+\sin \alpha)} \sqrt{1-(\sin \alpha)^{2}}=\frac{1}{2} \frac{\cos \alpha}{1+\sin \alpha}
\end{aligned}
$$

Now we can define the points $P C, P D, P E$ based on $P A, P B$

$$
\begin{aligned}
& p C=p A+x(p B-p A) \\
& P D=\frac{1}{2} p A+\frac{1}{2} p B+z\{\{0,-1\}\{1,0\}\} \cdot(p B-p A) \\
& p E=p B-x(p B-p A)
\end{aligned}
$$

The above formulas are all dependent on $\alpha \in[0, \pi / 2]$. Therefore, our formula for $\operatorname{Ces} 1\left[\left\{p A_{-}, p B_{-}\right\}, C_{-}\right]$ should depend on $\mathcal{L}$. Then you can do your testing in Manipulate [J where you can vary O in the interval $[0,91 / 2]$. It shone be easy to conclude where the points $P C, P D$ and $P E$ should be when $\alpha=0$ and $\alpha=\pi / 2$.

