Problems from Section 4.1

Problem 20

- (a) How many integers in $\{1000, \ldots, 9999\}$ are divisable by 9

We have $999=111 * 9$. Thus the smallest integer in this set divisable by 9 is $112 * 9$. The largest integer divisable by 9 in this set is $9999=1111 * 9$. Thus there are

In[51]:= 1111-111
Out[51]= 1000
integers in the given set whichare divisable by 9

We can verify this in Mathematica by the following commands

```
In[52]:= IntegerQ[揞]&[7866]
Out[52]= True
In[53]:= Length[Select[Range[1000, 9999], IntegerQ[\frac{#}{9}]&]]
Out[53]= 1000
```

- (b) How many integers in $\{1000, \ldots, 9999\}$ are even
$1000=500 * 2$ is even and $4999 * 2=9998$ is even. Thus, there are

```
In[54]:= 4999-500+1
```

Out[54] = 4500
even integers in this set.

Verification in Mathematica

```
In[55]:= Length[Select[Range[1000, 9999], EvenQ[#] &]]
Out[55]= 4500
```


- (c) How many integers in $\{1000, \ldots, 9999\}$ have distinct digits

We calculate this by using the product rule. There are 9 options, that is $\{1,2,3,4,5,6,7,8,9\}$, to choose the first digit; say this is d_{1}; there are 9 options, that is $\{0,1,2,3,4,5,6,7,8,9\} \backslash\left\{d_{1}\right\}$, to choose the second digit; say this is d_{2}; there are 8 options, that is $\{0,1,2,3,4,5,6,7,8,9\} \backslash\left\{d_{1}, d_{2}\right\}$, to choose the third digit; say this is d_{3}; and finally, there are 7 options, that is $\{0,1,2,3,4,5,6,7,8,9\} \backslash\left\{d_{1}, d_{2}, d_{3}\right\}$, to choose the fourth digit.

```
In[56]:= 9987
Out[56]= 4536
```

Verification in Mathematica

The command

```
In[57]:= Length[Union[IntegerDigits[#]]] &[3456]
Out[57]= 4
```

tells us how many DISTINCT digits there are in an integer. The command

```
In[58]:= Length[Union[IntegerDigits[#]]] == 4&[3456]
Out[58]= True
```

tells if the number of DISTINCT digits is equal to 4
Finally this is Mathematica's answer to (c)

```
In[59]:= Length[Select[Range[1000, 9999], Length[Union[IntegerDigits[#]]] == 4 &]]
Out[59]= 4536
```


- (d) How many integers in $\{1000, \ldots, 9999\}$ are not divisable by 3

$999=333 * 3$ and $9999=3333 * 3$, so there are 3000 integers divisable by 3 . Since the total is 9000 integers, there are 6000 integers not divisable by 3

```
In[60]:= Length[Select[Range[1000, 9999], Not[IntegerQ[\frac{#}{3}]]&]]
Out[60]= 6000
```

- (e), (f), (g), (h)

The relevant counts are:
the number of integers divisable by 5
$\operatorname{In}[61]:=\operatorname{div5}=$ Floor $\left[\frac{9999}{5}\right]-$ Floor $\left[\frac{999}{5}\right]$
Out[61]= 1800
the number of integers divisable by 7
$\operatorname{In}[62]:=\operatorname{div} 7=$ Floor $\left[\frac{9999}{7}\right]-$ Floor $\left[\frac{999}{7}\right]$
Out[62]= 1286
the number of integers divisable by both 5 and 7

```
In[63]:= div35 = Floor [\frac{9999}{35}]-\mathrm{ Floor [ (%99}}
Out[63]= 257
```

So, the answer to (e), the number of integers divisable by 5 or 7 is

```
In[64]:= div5 + div7-\operatorname{div}35
Out[64]= 2829
```

Mathematica verification

```
In[65]:= Length[Select[Range[1000, 9999], Or[IntegerQ[\frac{#}{7}],\mathrm{ IntegerQ[专}]]&]]
Out[65]= 2829
```

The answer to (f), the number of integers not divisable by either 5 or 7 is

```
In[66]:= 9000-(div5 + div7-div35)
Out[66]= 6171
```

Mathematica verification

```
In[67]:= Length[Select[Range[1000, 9999], Not[Or[IntegerQ[\frac{#}{7}], IntegerQ[㐁}]]]&]
Out[67]= 6171
```

The answer to (g), the number of integers divisable by 5 but not divisable by 7 is

```
In[68]:= div5-div35
Out[68]= 1543
```

Mathematica verification

```
In[69]:= Length[Select[Range[1000, 9999], And[Not[IntegerQ[㐁]], IntegerQ[\frac{#}{5}]]&]]
Out[69]= 1543
```

The answer to (h), the number of integers divisable by 5 and divisable by 7 is

```
In[70]:= div35
```

Out[70]= 257

Mathematica verification
$\operatorname{In}[71]:=\operatorname{Length}\left[\operatorname{Select}\left[\operatorname{Range}[1000,9999], \operatorname{And}\left[\operatorname{IntegerQ}\left[\frac{\#}{7}\right]\right.\right.\right.$, IntegerQ $\left.\left.\left.\left[\frac{\#}{5}\right]\right] \&\right]\right]$
Out[71]= 257

To verify problems involving strings we need

```
In[72]:= << DiscreteMath`Combinatorica`
In[73]:= Strings[{0, 1}, 4]
Out[73]= {{0, 0, 0, 0}, {0, 0, 0, 1}, {0, 0, 1, 0}, {0, 0, 1, 1}, {0, 1, 0, 0},
    {0, 1, 0, 1}, {0, 1, 1, 0}, {0, 1, 1, 1}, {1, 0, 0, 0}, {1, 0, 0, 1},
    {1,0, 1, 0}, {1, 0, 1, 1}, {1, 1, 0, 0}, {1, 1, 0, 1}, {1, 1, 1, 0}, {1, 1, 1, 1}}
```


Problem 40

How many bit strings of length 7 start with 00 or end with 111 ?
There are 32 strings which start with 00 and there are 16 strings which end with 111 . There are 4 strings that start with 00 and end with 111. Thus the answer is by inclusion-exclusion rule

```
In[74]:= 32+16-4
Out[74]= 44
```

Mathematica verification

The following command will tell me which is the first bit in a bitstring

```
In[75]:= #\llbracket1\rrbracket&[{1, 0, 0, 1, 0, 1, 1}]
Out[75]= 1
```

The following command will tell me what problem is asking for

```
In[76]:= Or[And[#\llbracket1\rrbracket == 0, #\llbracket2\rrbracket == 0], And[#\llbracket7\rrbracket == 1, #\llbracket6\rrbracket]= 1, #\llbracket5\rrbracket == 1]] &[{1, 0, 1, 0, 0, 1, 1}]
Out[76]= False
In[77]:= Or[And[#\llbracket1\rrbracket == 0, #\llbracket2\rrbracket == 0], And[#\llbracket7\rrbracket == 1, #\llbracket6\rrbracket == 1, #\llbracket5\rrbracket == 1]]&[{0, 0, 1, 0, 0, 1, 1}]
Out[77]= True
In[78]:= Length[Select[Strings[{0, 1}, 7],
    Or[And[#\llbracket1\rrbracket == 0, #\llbracket2\rrbracket == 0], And[#\llbracket7\rrbracket == 1, #\llbracket6\rrbracket == 1, #\llbracket5\rrbracket == 1]] &]]
Out[78]= 44
```


Problem 42

How many bit strings of length 10 contain at least 5 consecutive 0 s or at least 5 consecutive 1 s?

We will first count the bitstrings with at least 5 consecutive 0 s.

The "at least 5 consecutive 0 s" can start at the following positions $1,2,3,4,5,6$

There are $2^{5}=32$ bit srings which start with $00000^{* * * * * ~(t y p e ~ 1) ~}$

There are $2^{4}=16$ bit srings which start with $100000^{* * * *}$ (type 2)

There are $2^{4}=16$ bit srings which start with *100000*** (type 3)

There are $2^{4}=16$ bit srings which start with ${ }^{* *} 100000^{* *}$ (type 4)
There are $2^{4}=16$ bit srings which start with ${ }^{* * *} 100000^{*}$ (type 5)

There are $2^{4}=16$ bit srings which start with ${ }^{* * * *} 100000$ (type 6)

There are no bitstrings that belong to two different types. (You conclude this by looking at types j and $\mathrm{k}, \mathrm{j}<\mathrm{k}$. Type k has 1 at position $\mathrm{k}-1$ while type j has 0 at the position $\mathrm{k}-1$.

Thus there are
$\operatorname{In}[79]:=32+5 * 16$
Out[79]= 112
bit strings with at least 5 consecutive 0 s

Also, there are 112 bit strings with at least 5 consecutive 1s.

There are 2 bit strings which are in both sets: 0000011111 and 1111100000 .
By the inclusion-exclusion principle the answer is

```
In[80]:= 2*112 - 2
Out[80]= 222
```

To verify this in Mathematica is a little bit more complicated.

The following command will collect the identical consecutive bits in separate lists

```
In[81]:= Split[{1, 0, 1, 0, 0, 1, 0, 0, 0, 0}]
Out[81]= {{1}, {0}, {1}, {0, 0}, {1}, {0, 0, 0, 0}}
```

The following command will count how many consecutive bits there are

```
In[82]:= Length[#] &/@Split[{1, 0, 1, 0, 0, 1, 0, 0, 0, 0}]
Out[82]= {1, 1, 1, 2, 1, 4}
```

The following command will find the maximum number of consecutive bits

```
In[83]:= Max[Length[#] &/@ Split[{1, 0, 1, 0, 0, 1, 0, 0, 0, 0}]]
Out[83]= 4
```

And finally we will ask if that max number is ≥ 5.

```
In[84]:= Max[Length[#] &/@ Split[{1, 0, 1, 0, 0, 1, 0, 0, 0, 0}]] \geq 5
Out[84]= False
```

Make this into a function of a bit string

```
In[85]:= Max[Length[#] &/@Split[#]] \geq 5&[{1, 0, 1, 0, 0, 1, 0, 0, 0, 0}]
Out[85]= False
In[86]:= Length[Select[Strings[{0, 1}, 10], Max[Length[#] &/@ Split[#]] \geq 5 &]]
Out[86]= 222
```

