Spring 2015 Math 309 Topics for the Final Exam

Logic. Know:

$>$ Truth table of the negation operator, conjunction, disjunction, exclusive disjunction, implication and biconditional.
$>$ How to form the negation of an implication and contrapositive, converse, and inverse of an implication
$>$ All different ways of saying p implies q
$>$ How to prove tautologies, contradictions and logical equivalences using truth tables
$>$ Logical equivalences, in particular distributive laws, De Morgan's laws and equivalences involving implications
$>$ The meaning of the universal and the existential quantifier, and their negations
$>$ How to work with nested quantifiers (how to state negations, how to recognize whether a statement is true or false and justify it, Exercises 26-33, 37, 38 and exercises on the web-site)
$>$ The most important rules of inference: modus ponens, modus tollens, hypothetical syllogism, disjunctive syllogism and the rules of inference for quantified statements
$>$ Proofs from Section 1.5 related to odd/even integers, rational and irrational numbers (Example 14, Example 18, Example 19, Example 21, Example 24, and the corresponding Exercises 2030)
$>$ How to translate English sentences into logical propositions

Sets and Functions. Know

$>$ The concept of a set, equality of sets, the concept of a subset, the empty set, cardinality of a finite set, the power set, Cartesian product
$>$ Different set notations, set builder notation, use of ellipses, Venn diagrams,
$>$ Set operations: intersection, union, set difference, complement, symmetric difference, and the corresponding set identities
> Proving set identities using a membership table
$>$ The formal definition of a function (web-site) and the concepts of domain, codomain and range
$>$ Definitions of a surjection, an injection and a bijection; how to recognize and prove whether a given function has these properties (Exercises 12, 13, 14, 17, 18)
$>$ The concept of composition of functions and the inverse function and connections to the previous item (Exercises 25, 26, 27)
> Properties of the floor and the ceiling and how to use them to solve related exercises (Examples 24, 25, Exercises 48, 49, 65, 66)

Axioms and Propositions for \mathbb{Z}. Know (The numbers in this section relate to the document "Basic properties of the Integers" posted on the class website)
$>$ Section 2, all propositions.
$>$ Section 3, Propositions 3.1, 3.2, 3.3, 3.6, Corollary 3.7. $0<1$. (In class I gave a proof by contradiction.)
$>$ Definitions 3.9 and 3.10 and Exercises 3.11 and 3.12.
$>$ Section 4 all Propositions.
$>$ All of Section 5.
$>$ All of Section 6.
Sequences, Induction and Recursion. Know
$>$ Some common sequences, the basic properties of the summation notation
$>$ The formulas for the sums of an arithmetic and a geometric progression with proofs
$>$ The formal statement of the Principe of Mathematical Induction (and a proof from the notes "Basic properties of the Integers"
$>$ How to do proofs involving both versions of the Mathematical Induction
$>$ How recursive definitions work and proofs involving recursively defined functions
Counting. Know
$>$ The basic counting principles and how to apply them to accurately count various sets
$>$ How to apply the Pigeonhole principle in various situations
$>$ Proof of Dirichelt's Approximation Theorem
$>$ How to use permutations and combinations to count various sets
$>$ Basic identities involving permutations and combinations and how to prove them using algebraic and combinatorial methods
$>$ Generalized permutations and combinations, how to count combinations and permutations with repetition
$>$ How to find closed form formula for a recursive sequence given by linear second-order homogeneous recursion (in book's language: How to solve linear second-order homogeneous recurrence relations) (Section 6.2: Theorem 1, Examples 3, 4, Theorem 2, Example 5, Exercises 3, 11)

